IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v179y2019icp916-927.html
   My bibliography  Save this article

Model predictive control for thermal energy storage assisted large central cooling systems

Author

Listed:
  • Shan, Kui
  • Fan, Cheng
  • Wang, Jiayuan

Abstract

Variable speed drivers (VSDs) are commonly used for enhancing energy efficiency in building central cooling systems. However, VSDs often consume about 4–8% of the converted energy. Moreover, the initial and maintenance costs of VSDs for extremely large and high voltage chillers could be extremely high. This study proposes to use thermal energy storage (TES) to enhance energy efficiency of extremely large constant speed chillers. A new model predictive control method is proposed to control the charging/discharging of TES and on/off of chillers to achieve high efficiency. The proposed method partially decouples the demand side and the supply side, so that the large chillers are either operated in high efficiency or turned off. The method can also solve the problem of frequent chiller tripping due to too low load in winter conditions. The proposed optimal control strategy has been validated on a dynamic platform built based on the existing chiller plant in a high-rise commercial building. Validation tests were conducted in both summer and winter conditions based on real operation data. Results show that the proposed method could improve the efficiency of chillers by 3.10% and 22.94% in summer and winter conditions, respectively.

Suggested Citation

  • Shan, Kui & Fan, Cheng & Wang, Jiayuan, 2019. "Model predictive control for thermal energy storage assisted large central cooling systems," Energy, Elsevier, vol. 179(C), pages 916-927.
  • Handle: RePEc:eee:energy:v:179:y:2019:i:c:p:916-927
    DOI: 10.1016/j.energy.2019.04.178
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219308175
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.04.178?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Baeten, Brecht & Confrey, Thomas & Pecceu, Sébastien & Rogiers, Frederik & Helsen, Lieve, 2016. "A validated model for mixing and buoyancy in stratified hot water storage tanks for use in building energy simulations," Applied Energy, Elsevier, vol. 172(C), pages 217-229.
    2. Zhang, Yin & Wang, Xin & Zhuo, Siwen & Zhang, Yinping, 2016. "Pre-feasibility of building cooling heating and power system with thermal energy storage considering energy supply–demand mismatch," Applied Energy, Elsevier, vol. 167(C), pages 125-134.
    3. Arteconi, Alessia & Ciarrocchi, Eleonora & Pan, Quanwen & Carducci, Francesco & Comodi, Gabriele & Polonara, Fabio & Wang, Ruzhu, 2017. "Thermal energy storage coupled with PV panels for demand side management of industrial building cooling loads," Applied Energy, Elsevier, vol. 185(P2), pages 1984-1993.
    4. Crespo Del Granado, Pedro & Pang, Zhan & Wallace, Stein W., 2016. "Synergy of smart grids and hybrid distributed generation on the value of energy storage," Applied Energy, Elsevier, vol. 170(C), pages 476-488.
    5. Cui, Borui & Gao, Dian-ce & Wang, Shengwei & Xue, Xue, 2015. "Effectiveness and life-cycle cost-benefit analysis of active cold storages for building demand management for smart grid applications," Applied Energy, Elsevier, vol. 147(C), pages 523-535.
    6. Cui, Borui & Gao, Dian-ce & Xiao, Fu & Wang, Shengwei, 2017. "Model-based optimal design of active cool thermal energy storage for maximal life-cycle cost saving from demand management in commercial buildings," Applied Energy, Elsevier, vol. 201(C), pages 382-396.
    7. Alva, Guruprasad & Lin, Yaxue & Fang, Guiyin, 2018. "An overview of thermal energy storage systems," Energy, Elsevier, vol. 144(C), pages 341-378.
    8. Luo, Na & Hong, Tianzhen & Li, Hui & Jia, Ruoxi & Weng, Wenguo, 2017. "Data analytics and optimization of an ice-based energy storage system for commercial buildings," Applied Energy, Elsevier, vol. 204(C), pages 459-475.
    9. Chan, Apple L.S. & Chow, Tin-Tai & Fong, Square K.F. & Lin, John Z., 2006. "Performance evaluation of district cooling plant with ice storage," Energy, Elsevier, vol. 31(14), pages 2750-2762.
    10. Guo, Shaopeng & Liu, Qibin & Sun, Jie & Jin, Hongguang, 2018. "A review on the utilization of hybrid renewable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 1121-1147.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ragosebo Kgaugelo Modise & Khumbulani Mpofu & Olukorede Tijani Adenuga, 2021. "Energy and Carbon Emission Efficiency Prediction: Applications in Future Transport Manufacturing," Energies, MDPI, vol. 14(24), pages 1-15, December.
    2. Shan, Kui & Wang, Shengwei & Zhuang, Chaoqun, 2021. "Controlling a large constant speed centrifugal chiller to provide grid frequency regulation: A validation based on onsite tests," Applied Energy, Elsevier, vol. 300(C).
    3. Yang Yuan & Neng Zhu & Haizhu Zhou & Hai Wang, 2021. "A New Model Predictive Control Method for Eliminating Hydraulic Oscillation and Dynamic Hydraulic Imbalance in a Complex Chilled Water System," Energies, MDPI, vol. 14(12), pages 1-23, June.
    4. Zou, Wenke & Sun, Yongjun & Gao, Dian-ce & Zhang, Xu, 2023. "Globally optimal control of hybrid chilled water plants integrated with small-scale thermal energy storage for energy-efficient operation," Energy, Elsevier, vol. 262(PA).
    5. Wan, Xin & Luo, Xiong-Lin, 2020. "Economic optimization of chemical processes based on zone predictive control with redundancy variables," Energy, Elsevier, vol. 212(C).
    6. Cao, Hui & Lin, Jiajing & Li, Nan, 2023. "Optimal control and energy efficiency evaluation of district ice storage system," Energy, Elsevier, vol. 276(C).
    7. Oravec, Juraj & Horváthová, Michaela & Bakošová, Monika, 2020. "Energy efficient convex-lifting-based robust control of a heat exchanger," Energy, Elsevier, vol. 201(C).
    8. Tarragona, Joan & Pisello, Anna Laura & Fernández, Cèsar & de Gracia, Alvaro & Cabeza, Luisa F., 2021. "Systematic review on model predictive control strategies applied to active thermal energy storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    9. Haji Haji, Vahab & Fekih, Afef & Monje, Concepción Alicia & Fakhri Asfestani, Ramin, 2020. "Adaptive model predictive control design for the speed and temperature control of a V94.2 gas turbine unit in a combined cycle power plant," Energy, Elsevier, vol. 207(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xun Yang & Yong Wang & Teng Xiong, 2017. "Numerical and Experimental Study on a Solar Water Heating System in Lhasa," Energies, MDPI, vol. 10(7), pages 1-13, July.
    2. Baeten, Brecht & Confrey, Thomas & Pecceu, Sébastien & Rogiers, Frederik & Helsen, Lieve, 2016. "A validated model for mixing and buoyancy in stratified hot water storage tanks for use in building energy simulations," Applied Energy, Elsevier, vol. 172(C), pages 217-229.
    3. Chai, Jiale & Huang, Pei & Sun, Yongjun, 2019. "Investigations of climate change impacts on net-zero energy building lifecycle performance in typical Chinese climate regions," Energy, Elsevier, vol. 185(C), pages 176-189.
    4. Wu, Wei & Bai, Yu & Huang, Hongyu & Ding, Zhixiong & Deng, Lisheng, 2019. "Charging and discharging characteristics of absorption thermal energy storage using ionic-liquid-based working fluids," Energy, Elsevier, vol. 189(C).
    5. Cui, Borui & Fan, Cheng & Munk, Jeffrey & Mao, Ning & Xiao, Fu & Dong, Jin & Kuruganti, Teja, 2019. "A hybrid building thermal modeling approach for predicting temperatures in typical, detached, two-story houses," Applied Energy, Elsevier, vol. 236(C), pages 101-116.
    6. Ebrahimi, Mahyar, 2020. "Storing electricity as thermal energy at community level for demand side management," Energy, Elsevier, vol. 193(C).
    7. Ding, Zhixiong & Wu, Wei & Chen, Youming & Leung, Michael, 2020. "Dynamic characteristics and performance improvement of a high-efficiency double-effectthermal battery for cooling and heating," Applied Energy, Elsevier, vol. 264(C).
    8. Luerssen, Christoph & Gandhi, Oktoviano & Reindl, Thomas & Sekhar, Chandra & Cheong, David, 2020. "Life cycle cost analysis (LCCA) of PV-powered cooling systems with thermal energy and battery storage for off-grid applications," Applied Energy, Elsevier, vol. 273(C).
    9. Luerssen, Christoph & Gandhi, Oktoviano & Reindl, Thomas & Sekhar, Chandra & Cheong, David, 2019. "Levelised Cost of Storage (LCOS) for solar-PV-powered cooling in the tropics," Applied Energy, Elsevier, vol. 242(C), pages 640-654.
    10. Yan, Chengchu & Gang, Wenjie & Niu, Xiaofeng & Peng, Xujian & Wang, Shengwei, 2017. "Quantitative evaluation of the impact of building load characteristics on energy performance of district cooling systems," Applied Energy, Elsevier, vol. 205(C), pages 635-643.
    11. Fanghan Su & Zhiyuan Wang & Yue Yuan & Chengcheng Song & Kejun Zeng & Yixing Chen & Rongpeng Zhang, 2023. "Enhanced Operation of Ice Storage System for Peak Load Management in Shopping Malls across Diverse Climate Zones," Sustainability, MDPI, vol. 15(20), pages 1-23, October.
    12. Zhang, Wei & Hong, Wenpeng & Jin, Xu, 2022. "Research on performance and control strategy of multi-cold source district cooling system," Energy, Elsevier, vol. 239(PB).
    13. Kamal, Rajeev & Moloney, Francesca & Wickramaratne, Chatura & Narasimhan, Arunkumar & Goswami, D.Y., 2019. "Strategic control and cost optimization of thermal energy storage in buildings using EnergyPlus," Applied Energy, Elsevier, vol. 246(C), pages 77-90.
    14. Cox, Sam J. & Kim, Dongsu & Cho, Heejin & Mago, Pedro, 2019. "Real time optimal control of district cooling system with thermal energy storage using neural networks," Applied Energy, Elsevier, vol. 238(C), pages 466-480.
    15. Chen, Long Xiang & Xie, Mei Na & Zhao, Pan Pan & Wang, Feng Xiang & Hu, Peng & Wang, Dong Xiang, 2018. "A novel isobaric adiabatic compressed air energy storage (IA-CAES) system on the base of volatile fluid," Applied Energy, Elsevier, vol. 210(C), pages 198-210.
    16. Sayegh, M.A. & Danielewicz, J. & Nannou, T. & Miniewicz, M. & Jadwiszczak, P. & Piekarska, K. & Jouhara, H., 2017. "Trends of European research and development in district heating technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 1183-1192.
    17. Du, Kun & Calautit, John & Eames, Philip & Wu, Yupeng, 2021. "A state-of-the-art review of the application of phase change materials (PCM) in Mobilized-Thermal Energy Storage (M-TES) for recovering low-temperature industrial waste heat (IWH) for distributed heat," Renewable Energy, Elsevier, vol. 168(C), pages 1040-1057.
    18. Sihvonen, Ville & Ollila, Iisa & Jaanto, Jasmin & Grönman, Aki & Honkapuro, Samuli & Riikonen, Juhani & Price, Alisdair, 2024. "Role of power-to-heat and thermal energy storage in decarbonization of district heating," Energy, Elsevier, vol. 305(C).
    19. Jun Li & Tao Zeng & Noriyuki Kobayashi & Haotai Xu & Yu Bai & Lisheng Deng & Zhaohong He & Hongyu Huang, 2019. "Lithium Hydroxide Reaction for Low Temperature Chemical Heat Storage: Hydration and Dehydration Reaction," Energies, MDPI, vol. 12(19), pages 1-13, September.
    20. He, Zhaoyu & Guo, Weimin & Zhang, Peng, 2022. "Performance prediction, optimal design and operational control of thermal energy storage using artificial intelligence methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:179:y:2019:i:c:p:916-927. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.