IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v250y2019icp161-174.html
   My bibliography  Save this article

Modeling and control of flexible loads for frequency regulation services considering compensation of communication latency and detection error

Author

Listed:
  • Hui, Hongxun
  • Ding, Yi
  • Song, Yonghua
  • Rahman, Saifur

Abstract

Demand response has been widely utilized to provide frequency regulation service for the power systems by adjusting the power consumption of flexible loads. The frequency regulation service is time-sensitive and generally realized by direct load control, due to the quick response requirement (generally a few seconds). Most of the existing studies assume that the control on flexible loads can be implemented immediately without communication latency (CML), and the system frequency deviations can be detected without errors (FDE). However, in reality, the CML and FDE are ever-present during the control process and can influence the effectiveness of regulation significantly. To address this issue, this paper develops the aggregation models of ON-OFF flexible loads and continuously adjustable flexible loads, respectively. The centralized and distributed control methods considering the CML and FDE are developed, respectively. On this basis, a novel hybrid control method is proposed to compensate the CML and FDE, in which the modification method is developed for improving the estimation accuracy of the FDE. The results in the numerical studies show that the maximum system frequency deviation extends from −0.112 Hz to −0.120 Hz and −0.221 Hz due to the FDE and CML, respectively. After the modification by the proposed hybrid control method, the maximum frequency deviation is decreased to −0.110 Hz, which is almost equal to the ideal value when there is no FDE and CML. Therefore, this research can compensate the CML and FDE well, which is useful for guiding demand response projects in smart grid.

Suggested Citation

  • Hui, Hongxun & Ding, Yi & Song, Yonghua & Rahman, Saifur, 2019. "Modeling and control of flexible loads for frequency regulation services considering compensation of communication latency and detection error," Applied Energy, Elsevier, vol. 250(C), pages 161-174.
  • Handle: RePEc:eee:appene:v:250:y:2019:i:c:p:161-174
    DOI: 10.1016/j.apenergy.2019.04.191
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261919308335
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2019.04.191?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Xiangyu & Pipattanasomporn, Manisa & Rahman, Saifur, 2017. "A self-learning algorithm for coordinated control of rooftop units in small- and medium-sized commercial buildings," Applied Energy, Elsevier, vol. 205(C), pages 1034-1049.
    2. Wang, Yi & Gan, Dahua & Sun, Mingyang & Zhang, Ning & Lu, Zongxiang & Kang, Chongqing, 2019. "Probabilistic individual load forecasting using pinball loss guided LSTM," Applied Energy, Elsevier, vol. 235(C), pages 10-20.
    3. Xie, Dunjian & Hui, Hongxun & Ding, Yi & Lin, Zhenzhi, 2018. "Operating reserve capacity evaluation of aggregated heterogeneous TCLs with price signals," Applied Energy, Elsevier, vol. 216(C), pages 338-347.
    4. Siano, Pierluigi, 2014. "Demand response and smart grids—A survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 461-478.
    5. Siano, Pierluigi & Sarno, Debora, 2016. "Assessing the benefits of residential demand response in a real time distribution energy market," Applied Energy, Elsevier, vol. 161(C), pages 533-551.
    6. Behrangrad, Mahdi, 2015. "A review of demand side management business models in the electricity market," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 270-283.
    7. Ding, Yi & Cui, Wenqi & Zhang, Shujun & Hui, Hongxun & Qiu, Yiwei & Song, Yonghua, 2019. "Multi-state operating reserve model of aggregate thermostatically-controlled-loads for power system short-term reliability evaluation," Applied Energy, Elsevier, vol. 241(C), pages 46-58.
    8. Ding, Yi & Shao, Changzheng & Yan, Jinyue & Song, Yonghua & Zhang, Chi & Guo, Chuangxin, 2018. "Economical flexibility options for integrating fluctuating wind energy in power systems: The case of China," Applied Energy, Elsevier, vol. 228(C), pages 426-436.
    9. Cai, Mengmeng & Pipattanasomporn, Manisa & Rahman, Saifur, 2019. "Day-ahead building-level load forecasts using deep learning vs. traditional time-series techniques," Applied Energy, Elsevier, vol. 236(C), pages 1078-1088.
    10. Hui, Hongxun & Ding, Yi & Liu, Weidong & Lin, You & Song, Yonghua, 2017. "Operating reserve evaluation of aggregated air conditioners," Applied Energy, Elsevier, vol. 196(C), pages 218-228.
    11. Wang, Jianxiao & Zhong, Haiwang & Ma, Ziming & Xia, Qing & Kang, Chongqing, 2017. "Review and prospect of integrated demand response in the multi-energy system," Applied Energy, Elsevier, vol. 202(C), pages 772-782.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Deepak Kumar Gupta & Amitkumar V. Jha & Bhargav Appasani & Avireni Srinivasulu & Nicu Bizon & Phatiphat Thounthong, 2021. "Load Frequency Control Using Hybrid Intelligent Optimization Technique for Multi-Source Power Systems," Energies, MDPI, vol. 14(6), pages 1-16, March.
    2. Latif, Abdul & Hussain, S.M. Suhail & Das, Dulal Chandra & Ustun, Taha Selim, 2020. "State-of-the-art of controllers and soft computing techniques for regulated load frequency management of single/multi-area traditional and renewable energy based power systems," Applied Energy, Elsevier, vol. 266(C).
    3. Liu, Xin & Li, Yang & Lin, Xueshan & Guo, Jiqun & Shi, Yunpeng & Shen, Yunwei, 2022. "Dynamic bidding strategy for a demand response aggregator in the frequency regulation market," Applied Energy, Elsevier, vol. 314(C).
    4. Shan, Kui & Wang, Shengwei & Zhuang, Chaoqun, 2021. "Controlling a large constant speed centrifugal chiller to provide grid frequency regulation: A validation based on onsite tests," Applied Energy, Elsevier, vol. 300(C).
    5. Moreno Jaramillo, Andres F. & Laverty, David M. & Morrow, D. John & Martinez del Rincon, Jesús & Foley, Aoife M., 2021. "Load modelling and non-intrusive load monitoring to integrate distributed energy resources in low and medium voltage networks," Renewable Energy, Elsevier, vol. 179(C), pages 445-466.
    6. Hui, Hongxun & Ding, Yi & Shi, Qingxin & Li, Fangxing & Song, Yonghua & Yan, Jinyue, 2020. "5G network-based Internet of Things for demand response in smart grid: A survey on application potential," Applied Energy, Elsevier, vol. 257(C).
    7. Zhao, Zhida & Yu, Hao & Li, Peng & Li, Peng & Kong, Xiangyu & Wu, Jianzhong & Wang, Chengshan, 2019. "Optimal placement of PMUs and communication links for distributed state estimation in distribution networks," Applied Energy, Elsevier, vol. 256(C).
    8. Wang, Huilong & Wang, Shengwei & Shan, Kui, 2020. "Experimental study on the dynamics, quality and impacts of using variable-speed pumps in buildings for frequency regulation of smart power grids," Energy, Elsevier, vol. 199(C).
    9. Gržanić, M. & Capuder, T. & Zhang, N. & Huang, W., 2022. "Prosumers as active market participants: A systematic review of evolution of opportunities, models and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    10. Huang, Zhijia & Wang, Fang & Lu, Yuehong & Chen, Xiaofeng & Wu, Qiqi, 2023. "Optimization model for home energy management system of rural dwellings," Energy, Elsevier, vol. 283(C).
    11. Das, Laya & Garg, Dinesh & Srinivasan, Babji, 2020. "NeuralCompression: A machine learning approach to compress high frequency measurements in smart grid," Applied Energy, Elsevier, vol. 257(C).
    12. Yang, Shaohua & Lao, Keng-Weng & Hui, Hongxun & Chen, Yulin, 2023. "A robustness-enhanced frequency regulation scheme for power system against multiple cyber and physical emergency events," Applied Energy, Elsevier, vol. 350(C).
    13. Al Kez, Dlzar & Foley, Aoife M. & Ahmed, Faraedoon W. & O'Malley, Mark & Muyeen, S.M., 2021. "Potential of data centers for fast frequency response services in synchronously isolated power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    14. Xiaohong Dong & Yang Ma & Xiaodan Yu & Xiangyu Wei & Yanqi Ren & Xin Zhang, 2023. "Secondary Frequency Regulation Control Strategy with Electric Vehicles Considering User Travel Uncertainty," Energies, MDPI, vol. 16(9), pages 1-18, April.
    15. Oshnoei, Arman & Kheradmandi, Morteza & Blaabjerg, Frede & Hatziargyriou, Nikos D. & Muyeen, S.M. & Anvari-Moghaddam, Amjad, 2022. "Coordinated control scheme for provision of frequency regulation service by virtual power plants," Applied Energy, Elsevier, vol. 325(C).
    16. Shang-Guan, Xingchen & He, Yong & Zhang, Chuanke & Jiang, Lin & Spencer, Joseph William & Wu, Min, 2020. "Sampled-data based discrete and fast load frequency control for power systems with wind power," Applied Energy, Elsevier, vol. 259(C).
    17. La Fata, Alice & Brignone, Massimo & Procopio, Renato & Bracco, Stefano & Delfino, Federico & Barilli, Riccardo & Ravasi, Martina & Zanellini, Fabio, 2022. "An efficient Energy Management System for long term planning and real time scheduling of flexible polygeneration systems," Renewable Energy, Elsevier, vol. 200(C), pages 1180-1201.
    18. Jarvinen, J. & Goldsworthy, M. & White, S. & Pudney, P. & Belusko, M. & Bruno, F., 2021. "Evaluating the utility of passive thermal storage as an energy storage system on the Australian energy market," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    19. Mohamed El-Hendawi & Zhanle Wang & Xiaoyue Liu, 2022. "Centralized and Distributed Optimization for Vehicle-to-Grid Applications in Frequency Regulation," Energies, MDPI, vol. 15(12), pages 1-22, June.
    20. Hui, Hongxun & Ding, Yi & Song, Yonghua, 2020. "Adaptive time-delay control of flexible loads in power systems facing accidental outages," Applied Energy, Elsevier, vol. 275(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xie, Kang & Hui, Hongxun & Ding, Yi & Song, Yonghua & Ye, Chengjin & Zheng, Wandong & Ye, Shuiquan, 2022. "Modeling and control of central air conditionings for providing regulation services for power systems," Applied Energy, Elsevier, vol. 315(C).
    2. Hui, Hongxun & Ding, Yi & Shi, Qingxin & Li, Fangxing & Song, Yonghua & Yan, Jinyue, 2020. "5G network-based Internet of Things for demand response in smart grid: A survey on application potential," Applied Energy, Elsevier, vol. 257(C).
    3. Ding, Yi & Cui, Wenqi & Zhang, Shujun & Hui, Hongxun & Qiu, Yiwei & Song, Yonghua, 2019. "Multi-state operating reserve model of aggregate thermostatically-controlled-loads for power system short-term reliability evaluation," Applied Energy, Elsevier, vol. 241(C), pages 46-58.
    4. Märkle-Huß, Joscha & Feuerriegel, Stefan & Neumann, Dirk, 2018. "Large-scale demand response and its implications for spot prices, load and policies: Insights from the German-Austrian electricity market," Applied Energy, Elsevier, vol. 210(C), pages 1290-1298.
    5. Hui, Hongxun & Chen, Yulin & Yang, Shaohua & Zhang, Hongcai & Jiang, Tao, 2022. "Coordination control of distributed generators and load resources for frequency restoration in isolated urban microgrids," Applied Energy, Elsevier, vol. 327(C).
    6. Hui, Hongxun & Ding, Yi & Song, Yonghua, 2020. "Adaptive time-delay control of flexible loads in power systems facing accidental outages," Applied Energy, Elsevier, vol. 275(C).
    7. Shang, Nan & Lin, You & Ding, Yi & Ye, Chengjin & Yan, Jinyue, 2019. "Nodal market power assessment of flexible demand resources," Applied Energy, Elsevier, vol. 235(C), pages 564-577.
    8. Hui, Hengyu & Bao, Minglei & Ding, Yi & Song, Yonghua, 2022. "Exploring the integrated flexible region of distributed multi-energy systems with process industry," Applied Energy, Elsevier, vol. 311(C).
    9. Oshnoei, Arman & Kheradmandi, Morteza & Blaabjerg, Frede & Hatziargyriou, Nikos D. & Muyeen, S.M. & Anvari-Moghaddam, Amjad, 2022. "Coordinated control scheme for provision of frequency regulation service by virtual power plants," Applied Energy, Elsevier, vol. 325(C).
    10. Meyabadi, A. Fattahi & Deihimi, M.H., 2017. "A review of demand-side management: Reconsidering theoretical framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 367-379.
    11. Charbonnier, Flora & Morstyn, Thomas & McCulloch, Malcolm D., 2022. "Coordination of resources at the edge of the electricity grid: Systematic review and taxonomy," Applied Energy, Elsevier, vol. 318(C).
    12. Ayman Esmat & Julio Usaola & María Ángeles Moreno, 2018. "Distribution-Level Flexibility Market for Congestion Management," Energies, MDPI, vol. 11(5), pages 1-24, April.
    13. Ellabban, Omar & Abu-Rub, Haitham, 2016. "Smart grid customers' acceptance and engagement: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 1285-1298.
    14. Wang, Jixiang & Chen, Xingying & Xie, Jun & Xu, Shuyang & Yu, Kun & Gan, Lei, 2019. "Dynamic control strategy of residential air conditionings considering environmental and behavioral uncertainties," Applied Energy, Elsevier, vol. 250(C), pages 1312-1320.
    15. Heydarian-Forushani, E. & Golshan, M.E.H. & Siano, Pierluigi, 2017. "Evaluating the benefits of coordinated emerging flexible resources in electricity markets," Applied Energy, Elsevier, vol. 199(C), pages 142-154.
    16. Jun Dong & Rong Li & Hui Huang, 2018. "Performance Evaluation of Residential Demand Response Based on a Modified Fuzzy VIKOR and Scalable Computing Method," Energies, MDPI, vol. 11(5), pages 1-27, April.
    17. Sarker, Eity & Seyedmahmoudian, Mehdi & Jamei, Elmira & Horan, Ben & Stojcevski, Alex, 2020. "Optimal management of home loads with renewable energy integration and demand response strategy," Energy, Elsevier, vol. 210(C).
    18. Li, Yiyan & Zhang, Si & Hu, Rongxing & Lu, Ning, 2021. "A meta-learning based distribution system load forecasting model selection framework," Applied Energy, Elsevier, vol. 294(C).
    19. Nezamoddini, Nasim & Wang, Yong, 2017. "Real-time electricity pricing for industrial customers: Survey and case studies in the United States," Applied Energy, Elsevier, vol. 195(C), pages 1023-1037.
    20. Good, Nicholas & Ellis, Keith A. & Mancarella, Pierluigi, 2017. "Review and classification of barriers and enablers of demand response in the smart grid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 57-72.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:250:y:2019:i:c:p:161-174. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.