IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v195y2022icp381-394.html
   My bibliography  Save this article

Optimal design of a hybrid ground source heat pump for an official building with thermal load imbalance and limited space for the ground heat exchanger

Author

Listed:
  • Cruz-Peragón, F.
  • Gómez-de la Cruz, F.J.
  • Palomar-Carnicero, J.M.
  • López-García, R.

Abstract

This work presents the optimal design of a hybrid ground source heat pump (GSHP), taking into account thermal imbalance and space limitation for the ground heat exchanger field (GHE), applied to an official building. Once the building loads are calculated and devices selected, experiments carried out from a single vertical borehole obtain the ground thermal characteristics, including a local short-term period function (STGF). From them, the Finite Line-Source (FLS) model simulates the GHE behavior, from decomposing the ground thermal loads in hourly linear steps for 50 years. A set of input variables, such as geometric configuration data of boreholes field, and additional terms associated with this hybrid operation, must be provided to the model. For optimization purposes, a design of experiments (DoE) considers the thermal ground characteristics and input factors, providing both energy savings and the internal rate of return as outputs (objective functions). Pareto's optimal solutions method provides the selected case, considering a compromise between economic and environmental benefits. It has been established for 18 boreholes (rectangular disposition) of 120 m deep, providing a 33.12% energy saving and an internal rate of return of 3.9%, also showing 89% of the total building load supported by the GHE.

Suggested Citation

  • Cruz-Peragón, F. & Gómez-de la Cruz, F.J. & Palomar-Carnicero, J.M. & López-García, R., 2022. "Optimal design of a hybrid ground source heat pump for an official building with thermal load imbalance and limited space for the ground heat exchanger," Renewable Energy, Elsevier, vol. 195(C), pages 381-394.
  • Handle: RePEc:eee:renene:v:195:y:2022:i:c:p:381-394
    DOI: 10.1016/j.renene.2022.06.052
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148122008849
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.06.052?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Min & Lai, Alvin C.K., 2012. "New temperature response functions (G functions) for pile and borehole ground heat exchangers based on composite-medium line-source theory," Energy, Elsevier, vol. 38(1), pages 255-263.
    2. Hu, Shuozhuo & Li, Jian & Yang, Fubin & Yang, Zhen & Duan, Yuanyuan, 2020. "Multi-objective optimization of organic Rankine cycle using hydrofluorolefins (HFOs) based on different target preferences," Energy, Elsevier, vol. 203(C).
    3. Claesson, Johan & Eskilson, Per, 1988. "Conductive heat extraction to a deep borehole: Thermal analyses and dimensioning rules," Energy, Elsevier, vol. 13(6), pages 509-527.
    4. Bozzoli, F. & Pagliarini, G. & Rainieri, S. & Schiavi, L., 2011. "Estimation of soil and grout thermal properties through a TSPEP (two-step parameter estimation procedure) applied to TRT (thermal response test) data," Energy, Elsevier, vol. 36(2), pages 839-846.
    5. Park, Honghee & Lee, Joo Seoung & Kim, Wonuk & Kim, Yongchan, 2013. "The cooling seasonal performance factor of a hybrid ground-source heat pump with parallel and serial configurations," Applied Energy, Elsevier, vol. 102(C), pages 877-884.
    6. Liu, Zhijian & Xu, Wei & Zhai, Xue & Qian, Cheng & Chen, Xi, 2017. "Feasibility and performance study of the hybrid ground-source heat pump system for one office building in Chinese heating dominated areas," Renewable Energy, Elsevier, vol. 101(C), pages 1131-1140.
    7. Ahmadfard, Mohammadamin & Bernier, Michel, 2019. "A review of vertical ground heat exchanger sizing tools including an inter-model comparison," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 247-265.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Emmi, Giuseppe & Baccega, Eleonora & Cesari, Silvia & Mainardi, Elena & Bottarelli, Michele, 2024. "Energy analysis of multi-source heat pump system: A real case study application," Renewable Energy, Elsevier, vol. 221(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Min & Lai, Alvin C.K., 2015. "Review of analytical models for heat transfer by vertical ground heat exchangers (GHEs): A perspective of time and space scales," Applied Energy, Elsevier, vol. 151(C), pages 178-191.
    2. Li, Min & Zhang, Liwen & Liu, Gang, 2020. "Step-wise algorithm for estimating multi-parameter of the ground and geothermal heat exchangers from thermal response tests," Renewable Energy, Elsevier, vol. 150(C), pages 435-442.
    3. Li, Min & Zhang, Liwen & Liu, Gang, 2019. "Estimation of thermal properties of soil and backfilling material from thermal response tests (TRTs) for exploiting shallow geothermal energy: Sensitivity, identifiability, and uncertainty," Renewable Energy, Elsevier, vol. 132(C), pages 1263-1270.
    4. Li, Min & Li, Ping & Chan, Vincent & Lai, Alvin C.K., 2014. "Full-scale temperature response function (G-function) for heat transfer by borehole ground heat exchangers (GHEs) from sub-hour to decades," Applied Energy, Elsevier, vol. 136(C), pages 197-205.
    5. Jia, Jie & Lee, W.L. & Cheng, Yuanda, 2019. "Field demonstration of a first constant-temperature thermal response test with both heat injection and extraction for ground source heat pump systems," Applied Energy, Elsevier, vol. 249(C), pages 79-86.
    6. Li, Chenglin & Zhang, Guozhu & Xiao, Suguang & Xie, Yongli & Liu, Xiaohua & Cao, Shiding, 2022. "Long-term operation of tunnel-lining ground heat exchangers in tropical zones: Energy, environmental, and economic performance evaluation," Renewable Energy, Elsevier, vol. 196(C), pages 1429-1442.
    7. Du, Yufang & Li, Min & Li, Yong & Lai, Alvin CK., 2023. "Tikhonov regularization stabilizes multi-parameter estimation of geothermal heat exchangers," Energy, Elsevier, vol. 262(PB).
    8. Zanchini, E. & Lazzari, S., 2014. "New g-functions for the hourly simulation of double U-tube borehole heat exchanger fields," Energy, Elsevier, vol. 70(C), pages 444-455.
    9. Rivera, Jaime A. & Blum, Philipp & Bayer, Peter, 2016. "A finite line source model with Cauchy-type top boundary conditions for simulating near surface effects on borehole heat exchangers," Energy, Elsevier, vol. 98(C), pages 50-63.
    10. Li, Min & Lai, Alvin C.K., 2013. "Analytical model for short-time responses of ground heat exchangers with U-shaped tubes: Model development and validation," Applied Energy, Elsevier, vol. 104(C), pages 510-516.
    11. Zhang, Xueping & Han, Zongwei & Ji, Qiang & Zhang, Hongzhi & Li, Xiuming, 2021. "Thermal response tests for the identification of soil thermal parameters: A review," Renewable Energy, Elsevier, vol. 173(C), pages 1123-1135.
    12. Liu, Zhijian & Li, Yuanwei & Xu, Wei & Yin, Hang & Gao, Jun & Jin, Guangya & Lun, Liyong & Jin, Guohui, 2019. "Performance and feasibility study of hybrid ground source heat pump system assisted with cooling tower for one office building based on one Shanghai case," Energy, Elsevier, vol. 173(C), pages 28-37.
    13. Zhang, Xueping & Han, Zongwei & Meng, Xinwei & Li, Gui & Ji, Qiang & Li, Xiuming & Yang, Lingyan, 2021. "Study on high-precision identification method of ground thermal properties based on neural network model," Renewable Energy, Elsevier, vol. 163(C), pages 1838-1848.
    14. Zhi, Chengqiang & Yang, Xiuqin & Zhou, Xiang & Tu, Shuyang & Zhang, Xu, 2022. "A revised sizing method for borehole heat exchangers in the Chinese national standard based on reliability and economy," Renewable Energy, Elsevier, vol. 191(C), pages 17-29.
    15. Paul Christodoulides & Ana Vieira & Stanislav Lenart & João Maranha & Gregor Vidmar & Rumen Popov & Aleksandar Georgiev & Lazaros Aresti & Georgios Florides, 2020. "Reviewing the Modeling Aspects and Practices of Shallow Geothermal Energy Systems," Energies, MDPI, vol. 13(16), pages 1-45, August.
    16. Olabi, Abdul Ghani & Mahmoud, Montaser & Soudan, Bassel & Wilberforce, Tabbi & Ramadan, Mohamad, 2020. "Geothermal based hybrid energy systems, toward eco-friendly energy approaches," Renewable Energy, Elsevier, vol. 147(P1), pages 2003-2012.
    17. Zhang, Xueping & Han, Zongwei & Li, Gui & Li, Xiuming, 2022. "Effect of temperature measurement error on parameters estimation accuracy for thermal response tests," Renewable Energy, Elsevier, vol. 185(C), pages 230-240.
    18. Zhang, Sheng & Lin, Zhang & Ai, Zhengtao & Huan, Chao & Cheng, Yong & Wang, Fenghao, 2019. "Multi-criteria performance optimization for operation of stratum ventilation under heating mode," Applied Energy, Elsevier, vol. 239(C), pages 969-980.
    19. Li, Xiang & Yilmaz, Selin & Patel, Martin K. & Chambers, Jonathan, 2023. "Techno-economic analysis of fifth-generation district heating and cooling combined with seasonal borehole thermal energy storage," Energy, Elsevier, vol. 285(C).
    20. Dutta, Rohan & Ghosh, Parthasarathi & Chowdhury, Kanchan, 2011. "Customization and validation of a commercial process simulator for dynamic simulation of Helium liquefier," Energy, Elsevier, vol. 36(5), pages 3204-3214.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:195:y:2022:i:c:p:381-394. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.