IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v308y2024ics0360544224025593.html
   My bibliography  Save this article

Model-based optimisation of solar-assisted ORC-based power unit for domestic micro-cogeneration

Author

Listed:
  • Fatigati, Fabio
  • Di Bartolomeo, Marco
  • Cipollone, Roberto

Abstract

Integrating flat solar thermal collectors and organic Rankine cycle (ORC)-based power units in micro-cogeneration systems ensures a reduction in CO2 emissions in domestic applications. The key component of these systems is the expander, which must withstand frequent off-design operating conditions owing to the intermittent nature of the solar source. Despite being in the first stage of technological development, scroll expanders are widely adopted in small-scale applications owing to their operating flexibility and robustness. In this study, a domestic micro-cogeneration unit equipped with a scroll expander is characterised experimentally. The experimental data are used to calibrate the expander and ORC unit models. The models are used to evaluate the operating limits of the units as functions of the main operating parameters. The maximum power and efficiency are obtained as 300 W and 3 %, respectively, for hot water temperatures between 90 °C and 100 °C, close to the rated performances. Finally, the effect of adopting a dual-intake port on the expander and unit performance is assessed. The technology facilitates the widening of the operating range (20–140 g/s mass flow rate of WF) and a peak power production of 1.2 kW.

Suggested Citation

  • Fatigati, Fabio & Di Bartolomeo, Marco & Cipollone, Roberto, 2024. "Model-based optimisation of solar-assisted ORC-based power unit for domestic micro-cogeneration," Energy, Elsevier, vol. 308(C).
  • Handle: RePEc:eee:energy:v:308:y:2024:i:c:s0360544224025593
    DOI: 10.1016/j.energy.2024.132785
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224025593
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.132785?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:308:y:2024:i:c:s0360544224025593. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.