IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v189y2024ipbs1364032123008298.html
   My bibliography  Save this article

Formation temperature range expansion and energy storage properties of CO2 hydrates

Author

Listed:
  • Tongu, Daiki
  • Obara, Shin'ya

Abstract

A hybrid thermal cycle is developed by storing liquid CO2 using an intermittent heat pump cycle (IHP) and forming CO2 hydrates (CHRs) using a CHR thermal cycle (CHT) with a high charge/discharge efficiency at low temperatures. The proposed technology for physical batteries operates the IHP in summer, when outside temperatures are high, and the CHT in winter. The operating period of a CHT with a high charge/discharge efficiency can be extended and the annual efficiency of IHP/CHT hybrid systems can be improved by increasing the temperature of the low-temperature heat source of the CHT. Therefore, cyclopentane, the crystal structure of which differs from that of CHRs, is added to the host fluid in this study. Then, the CHR formation temperature range is expanded based on the results of the experiment. When the CHR formation temperature (outdoor air temperature as low-temperature heat source) is increased from the conventional 0 °C–15 °C, the amount of generated CHR slightly exceeds the amount generated by a conventional system. These findings show that a CHT system, which conventionally requires a low-temperature heat source (approximately 0 °C), can now be operated at a moderate temperature of 15 °C. When CHR are formed at 0 °C for 18 h and then dissociated at 25 °C, the prototype reactor produces a high-pressure dissociated gas of 20.5 MPa at an initial formation pressure of 5 MPa. When cyclopentane is added to water in a 3500 cm3 vessel at the appropriate concentration, CO2 hydrates large enough to be produced even at outdoor temperatures of about 15 °C or less. The proposed system can be operated at outdoor temperatures below 15 °C. These results represent the close realization of the proposed CHT.

Suggested Citation

  • Tongu, Daiki & Obara, Shin'ya, 2024. "Formation temperature range expansion and energy storage properties of CO2 hydrates," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
  • Handle: RePEc:eee:rensus:v:189:y:2024:i:pb:s1364032123008298
    DOI: 10.1016/j.rser.2023.113971
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032123008298
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2023.113971?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Jiajia & Li, Xingshuo & Yan, Peigang & Zhou, Guowen & Liu, Jinfu & Yu, Daren, 2023. "Thermodynamics, flexibility and techno-economics assessment of a novel integration of coal-fired combined heating and power generation unit and compressed air energy storage," Applied Energy, Elsevier, vol. 339(C).
    2. Emrani, Anisa & Berrada, Asmae & Bakhouya, Mohamed, 2022. "Optimal sizing and deployment of gravity energy storage system in hybrid PV-Wind power plant," Renewable Energy, Elsevier, vol. 183(C), pages 12-27.
    3. Kawasaki, Toshiyuki & Obara, Shin'ya, 2020. "CO2 hydrate heat cycle using a carbon fiber supported catalyst for gas hydrate formation processes," Applied Energy, Elsevier, vol. 269(C).
    4. Hou, Hui & Xu, Tao & Wu, Xixiu & Wang, Huan & Tang, Aihong & Chen, Yangyang, 2020. "Optimal capacity configuration of the wind-photovoltaic-storage hybrid power system based on gravity energy storage system," Applied Energy, Elsevier, vol. 271(C).
    5. Ouyang, Tiancheng & Qin, Peijia & Xie, Shutao & Tan, Xianlin & Pan, Mingming, 2023. "Flexible dispatch strategy of purchasing-selling electricity for coal-fired power plant based on compressed air energy storage," Energy, Elsevier, vol. 267(C).
    6. E. Dendy Sloan, 2003. "Fundamental principles and applications of natural gas hydrates," Nature, Nature, vol. 426(6964), pages 353-359, November.
    7. Fu, Xintao & Yan, Xuewen & Liu, Zhan, 2023. "Coupling thermodynamics and economics of liquid CO2 energy storage system with refrigerant additives," Energy, Elsevier, vol. 284(C).
    8. Yang, Tingting & Liu, Ziyuan & Zeng, Deliang & Zhu, Yansong, 2023. "Simulation and evaluation of flexible enhancement of thermal power unit coupled with flywheel energy storage array," Energy, Elsevier, vol. 281(C).
    9. Huang, Qingxi & Feng, Biao & Liu, Shengchun & Ma, Cuiping & Li, Hailong & Sun, Qie, 2023. "Dynamic operating characteristics of a compressed CO2 energy storage system," Applied Energy, Elsevier, vol. 341(C).
    10. Obara, Shin'ya, 2023. "Energy storage device based on a hybrid system of a CO2 heat pump cycle and a CO2 hydrate heat cycle," Renewable and Sustainable Energy Reviews, Elsevier, vol. 179(C).
    11. Qin, Jiyou & Chinen, Daigo & Obara, Shin'ya, 2022. "Storage and discharge efficiency of small-temperature-difference CO2 hydrate batteries with cyclopentane accelerators," Applied Energy, Elsevier, vol. 308(C).
    12. Liu, Zhan & Liu, Xu & Zhang, Weifeng & Yang, Shanju & Li, Hailong & Yang, Xiaohu, 2022. "Thermodynamic analysis on the feasibility of a liquid energy storage system using CO2-based mixture as the working fluid," Energy, Elsevier, vol. 238(PA).
    13. Xue, Xiaojun & Lv, Jiayang & Chen, Heng & Xu, Gang & Li, Qiubai, 2022. "Thermodynamic and economic analyses of a new compressed air energy storage system incorporated with a waste-to-energy plant and a biogas power plant," Energy, Elsevier, vol. 261(PB).
    14. Obara, Shin'ya & Tanaka, Ryu, 2021. "Waste heat recovery system for nuclear power plants using the gas hydrate heat cycle," Applied Energy, Elsevier, vol. 292(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Park, Joon Ho & Park, Jungjoon & Lee, Jae Won & Kang, Yong Tae, 2023. "Progress in CO2 hydrate formation and feasibility analysis for cold thermal energy harvesting application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    2. Aminnaji, Morteza & Qureshi, M Fahed & Dashti, Hossein & Hase, Alfred & Mosalanejad, Abdolali & Jahanbakhsh, Amir & Babaei, Masoud & Amiri, Amirpiran & Maroto-Valer, Mercedes, 2024. "CO2 Gas hydrate for carbon capture and storage applications – Part 1," Energy, Elsevier, vol. 300(C).
    3. Dewevre, Florent & Lacroix, Clément & Loubar, Khaled & Poncet, Sébastien, 2024. "Carbon dioxide energy storage systems: Current researches and perspectives," Renewable Energy, Elsevier, vol. 224(C).
    4. Obara, Shin'ya, 2023. "Energy storage device based on a hybrid system of a CO2 heat pump cycle and a CO2 hydrate heat cycle," Renewable and Sustainable Energy Reviews, Elsevier, vol. 179(C).
    5. Qin, Jiyou & Chinen, Daigo & Obara, Shin'ya, 2022. "Storage and discharge efficiency of small-temperature-difference CO2 hydrate batteries with cyclopentane accelerators," Applied Energy, Elsevier, vol. 308(C).
    6. Deng, Zhixia & Fan, Shuanshi & Wang, Yanhong & Lang, Xuemei & Li, Gang & Liu, Faping & Li, Mengyang, 2023. "High storage capacity and high formation rate of carbon dioxide hydrates via super-hydrophobic fluorinated graphenes," Energy, Elsevier, vol. 264(C).
    7. Wang, Jiangjiang & Deng, Hongda & Qi, Xiaoling, 2022. "Cost-based site and capacity optimization of multi-energy storage system in the regional integrated energy networks," Energy, Elsevier, vol. 261(PA).
    8. Lei, Gang & Tang, Jiadi & Zhang, Ling & Wu, Qi & Li, Jun, 2024. "Effective thermal conductivity for hydrate-bearing sediments under stress and local thermal stimulation conditions: A novel analytical model," Energy, Elsevier, vol. 288(C).
    9. Romo-De-La-Cruz, Cesar-Octavio & Chen, Yun & Liang, Liang & Paredes-Navia, Sergio A. & Wong-Ng, Winnie K. & Song, Xueyan, 2023. "Entering new era of thermoelectric oxide ceramics with high power factor through designing grain boundaries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 175(C).
    10. Chen, Siyuan & Wang, Yanhong & Lang, Xuemei & Fan, Shuanshi & Li, Gang, 2023. "Rapid and high hydrogen storage in epoxycyclopentane hydrate at moderate pressure," Energy, Elsevier, vol. 268(C).
    11. Chen, Chang & Zhang, Yu & Li, Xiaosen & Gao, Fei & Chen, Yuru & Chen, Zhaoyang, 2024. "Experimental investigation into gas production from methane hydrate in sediments with different contents of illite clay by depressurization," Energy, Elsevier, vol. 296(C).
    12. Maria Filomena Loreto & Umberta Tinivella & Flavio Accaino & Michela Giustiniani, 2010. "Offshore Antarctic Peninsula Gas Hydrate Reservoir Characterization by Geophysical Data Analysis," Energies, MDPI, vol. 4(1), pages 1-18, December.
    13. Fu, Xintao & Zhang, Yilun & Liu, Xu & Liu, Zhan, 2024. "Stable power supply system consisting of solar, wind and liquid carbon dioxide energy storage," Renewable Energy, Elsevier, vol. 221(C).
    14. Yang, Ming & Wang, Yuze & Wu, Hui & Zhang, Pengwei & Ju, Xin, 2024. "Thermo-hydro-chemical modeling and analysis of methane extraction from fractured gas hydrate-bearing sediments," Energy, Elsevier, vol. 292(C).
    15. Xu, Chun-Gang & Cai, Jing & Yu, Yi-Song & Yan, Ke-Feng & Li, Xiao-Sen, 2018. "Effect of pressure on methane recovery from natural gas hydrates by methane-carbon dioxide replacement," Applied Energy, Elsevier, vol. 217(C), pages 527-536.
    16. Jiyong Li & Zeyi Hua & Lin Tian & Peiwen Chen & Hao Dong, 2024. "Optimal Capacity Allocation for Life Cycle Multiobjective Integrated Energy Systems Considering Capacity Tariffs and Eco-Indicator 99," Sustainability, MDPI, vol. 16(20), pages 1-22, October.
    17. Guan, Dawei & Qu, Aoxing & Gao, Peng & Fan, Qi & Li, Qingping & Zhang, Lunxiang & Zhao, Jiafei & Song, Yongchen & Yang, Lei, 2023. "Improved temperature distribution upon varying gas producing channel in gas hydrate reservoir: Insights from the Joule-Thomson effect," Applied Energy, Elsevier, vol. 348(C).
    18. Choi, Wonjung & Lee, Yohan & Mok, Junghoon & Seo, Yongwon, 2020. "Influence of feed gas composition on structural transformation and guest exchange behaviors in sH hydrate – Flue gas replacement for energy recovery and CO2 sequestration," Energy, Elsevier, vol. 207(C).
    19. Luís Bernardes & Júlio Carneiro & Pedro Madureira & Filipe Brandão & Cristina Roque, 2015. "Determination of Priority Study Areas for Coupling CO2 Storage and CH 4 Gas Hydrates Recovery in the Portuguese Offshore Area," Energies, MDPI, vol. 8(9), pages 1-17, September.
    20. Emrani, Anisa & Berrada, Asmae & Bakhouya, Mohamed, 2022. "Optimal sizing and deployment of gravity energy storage system in hybrid PV-Wind power plant," Renewable Energy, Elsevier, vol. 183(C), pages 12-27.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:189:y:2024:i:pb:s1364032123008298. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.