IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v277y2020ics0306261920310679.html
   My bibliography  Save this article

Modeling of the effects of cathode catalyst layer design parameters on performance of polymer electrolyte membrane fuel cell

Author

Listed:
  • He, Pu
  • Mu, Yu-Tong
  • Park, Jae Wan
  • Tao, Wen-Quan

Abstract

A comprehensive macroscopic three-dimensional multiphase non-isothermal polymer electrolyte membrane fuel cell (PEMFC) model coupled with an improved electrochemical kinetics model considering the geometric structure parameters of the cathode catalyst layer (CCL) and oxygen transport process in CCL is developed. The effects of five CCL design parameters are investigated. It is found that the Pt loading of CCL has a significant effect on the performance, a low platinum (Pt) loading is more likely to cause oxygen starvation. The increase of Pt/C ratio can promote the performance significantly at a lower Pt/C ratio. A lower I/C ratio is good for the enhancement of limiting current density, a larger I/C ratio is good for the increase of maximum power density, and the increase in I/C ratio is better for the uniformity of membrane water distribution. With the decrease of carbon particle radius, the oxygen concentration on the Pt surface of CCL increases significantly. The increase of electrochemical specific area (ECSA) of Pt particles can promote the performance. In addition, a discussion on applicability of new correlations of capillary pressure-water saturation and effective diffusivity and their effects on the predicted PEMFC performance is presented.

Suggested Citation

  • He, Pu & Mu, Yu-Tong & Park, Jae Wan & Tao, Wen-Quan, 2020. "Modeling of the effects of cathode catalyst layer design parameters on performance of polymer electrolyte membrane fuel cell," Applied Energy, Elsevier, vol. 277(C).
  • Handle: RePEc:eee:appene:v:277:y:2020:i:c:s0306261920310679
    DOI: 10.1016/j.apenergy.2020.115555
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261920310679
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2020.115555?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wu, Horng-Wen, 2016. "A review of recent development: Transport and performance modeling of PEM fuel cells," Applied Energy, Elsevier, vol. 165(C), pages 81-106.
    2. Mu, Yu-Tong & Weber, Adam Z. & Gu, Zhao-Lin & Tao, Wen-Quan, 2019. "Mesoscopic modeling of transport resistances in a polymer-electrolyte fuel-cell catalyst layer: Analysis of hydrogen limiting currents," Applied Energy, Elsevier, vol. 255(C).
    3. Park, Jaeman & Oh, Hwanyeong & Lee, Yoo Il & Min, Kyoungdoug & Lee, Eunsook & Jyoung, Jy-Young, 2016. "Effect of the pore size variation in the substrate of the gas diffusion layer on water management and fuel cell performance," Applied Energy, Elsevier, vol. 171(C), pages 200-212.
    4. Cao, Tao-Feng & Lin, Hong & Chen, Li & He, Ya-Ling & Tao, Wen-Quan, 2013. "Numerical investigation of the coupled water and thermal management in PEM fuel cell," Applied Energy, Elsevier, vol. 112(C), pages 1115-1125.
    5. Ozen, Dilek Nur & Timurkutluk, Bora & Altinisik, Kemal, 2016. "Effects of operation temperature and reactant gas humidity levels on performance of PEM fuel cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1298-1306.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wan, Yue & Qiu, Diankai & Yi, Peiyun & Peng, Linfa & Lai, Xinmin, 2022. "Design and optimization of gradient wettability pore structure of adaptive PEM fuel cell cathode catalyst layer," Applied Energy, Elsevier, vol. 312(C).
    2. Wei, Pengnan & Chang, Guofeng & Fan, Ruijia & Xu, Yiming & Chen, Siqi, 2023. "Investigation of output performance and temperature distribution uniformity of PEMFC based on Pt loading gradient design," Applied Energy, Elsevier, vol. 352(C).
    3. Abdollahipour, Armin & Sayyaadi, Hoseyn, 2022. "A novel electrochemical refrigeration system based on the combined proton exchange membrane fuel cell-electrolyzer," Applied Energy, Elsevier, vol. 316(C).
    4. Bai, Fan & Quan, Hong-Bing & Yin, Ren-Jie & Zhang, Zhuo & Jin, Shu-Qi & He, Pu & Mu, Yu-Tong & Gong, Xiao-Ming & Tao, Wen-Quan, 2022. "Three-dimensional multi-field digital twin technology for proton exchange membrane fuel cells," Applied Energy, Elsevier, vol. 324(C).
    5. Li, Bing & Wan, Kechuang & Xie, Meng & Chu, Tiankuo & Wang, Xiaolei & Li, Xiang & Yang, Daijun & Ming, Pingwen & Zhang, Cunman, 2022. "Durability degradation mechanism and consistency analysis for proton exchange membrane fuel cell stack," Applied Energy, Elsevier, vol. 314(C).
    6. Yuan, Hao & Dai, Haifeng & Ming, Pingwen & Li, Sida & Wei, Xuezhe, 2022. "A new insight into the effects of agglomerate parameters on internal dynamics of proton exchange membrane fuel cell by an advanced impedance dimension model," Energy, Elsevier, vol. 253(C).
    7. Siwen Gu & Jiaan Wang & Xinmin You & Yu Zhuang, 2023. "Investigating the Parameter-Driven Cathode Gas Diffusion of PEMFCs with a Piecewise Linearization Model," Energies, MDPI, vol. 16(9), pages 1-12, April.
    8. Fan, Ruijia & Chang, Guofeng & Xu, Yiming & Zhang, Yuanzhi, 2024. "Investigating the transient electrical behaviors in PEM fuel cells under various platinum distributions within cathode catalyst layers," Applied Energy, Elsevier, vol. 359(C).
    9. Miao Ye & Long Rong & Xu Ma & Weiwei Yang, 2023. "Numerical Optimization of Triple-Phase Components in Order-Structured Cathode Catalyst Layer of a Proton Exchange Membrane Fuel Cell," Energies, MDPI, vol. 16(4), pages 1-19, February.
    10. Li, Xiang & Tang, Fumin & Wang, Qianqian & Li, Bing & Dai, Haifeng & Chang, Guofeng & Zhang, Cunman & Ming, Pingwen, 2023. "Effect of cathode catalyst layer on proton exchange membrane fuel cell performance: Considering the spatially variable distribution," Renewable Energy, Elsevier, vol. 212(C), pages 644-654.
    11. Ming Peng & Enci Dong & Li Chen & Yu Wang & Wen-Quan Tao, 2022. "Effects of Cathode Gas Diffusion Layer Configuration on the Performance of Open Cathode Air-Cooled Polymer Electrolyte Membrane Fuel Cell," Energies, MDPI, vol. 15(17), pages 1-21, August.
    12. Ahmed Mohmed Dafalla & Lin Wei & Bereket Tsegai Habte & Jian Guo & Fangming Jiang, 2022. "Membrane Electrode Assembly Degradation Modeling of Proton Exchange Membrane Fuel Cells: A Review," Energies, MDPI, vol. 15(23), pages 1-26, December.
    13. Yu, Rui Jiao & Guo, Hang & Ye, Fang & Chen, Hao, 2022. "Multi-parameter optimization of stepwise distribution of parameters of gas diffusion layer and catalyst layer for PEMFC peak power density," Applied Energy, Elsevier, vol. 324(C).
    14. Li, Hui & Eghbalian, Nasrin, 2021. "Numerical studies of effect of integrated through-plane array flow field on novel PEFC performance using BWO algorithm under uncertainties," Energy, Elsevier, vol. 231(C).
    15. Chen, Lei & Chen, Yanyu & Tao, Wen-Quan, 2023. "Schroeder's paradox in proton exchange membrane fuel cells: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    16. Kim, Eunji & Song, Seunghwan & Choi, Seoeun & Park, Jung Ock & Kim, Junghwan & Kwon, Kyungjung, 2021. "Parameter analysis from the modeling of high temperature proton exchange membrane fuel cells," Applied Energy, Elsevier, vol. 301(C).
    17. Kang, Zhenye & Wang, Hao & Liu, Yanrong & Mo, Jingke & Wang, Min & Li, Jing & Tian, Xinlong, 2022. "Exploring and understanding the internal voltage losses through catalyst layers in proton exchange membrane water electrolysis devices," Applied Energy, Elsevier, vol. 317(C).
    18. Saeidfar, Asal & Yesilyurt, Serhat, 2023. "Numerical investigation of the effects of catalyst layer composition and channel to rib width ratios for low platinum loaded PEMFCs," Applied Energy, Elsevier, vol. 339(C).
    19. Teng Teng & Xin Zhang & Qicheng Xue & Baodi Zhang, 2024. "Research of Proton Exchange Membrane Fuel Cell Modeling on Concentration Polarization under Variable-Temperature Operating Conditions," Energies, MDPI, vol. 17(3), pages 1-17, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Blandy Pamplona Solis & Julio César Cruz Argüello & Leopoldo Gómez Barba & Mayra Polett Gurrola & Zakaryaa Zarhri & Danna Lizeth TrejoArroyo, 2019. "Bibliometric Analysis of the Mass Transport in a Gas Diffusion Layer in PEM Fuel Cells," Sustainability, MDPI, vol. 11(23), pages 1-18, November.
    2. Tzelepis, Stefanos & Kavadias, Kosmas A. & Marnellos, George E. & Xydis, George, 2021. "A review study on proton exchange membrane fuel cell electrochemical performance focusing on anode and cathode catalyst layer modelling at macroscopic level," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    3. Saeidfar, Asal & Yesilyurt, Serhat, 2023. "Numerical investigation of the effects of catalyst layer composition and channel to rib width ratios for low platinum loaded PEMFCs," Applied Energy, Elsevier, vol. 339(C).
    4. Mo, Jingke & Kang, Zhenye & Yang, Gaoqiang & Retterer, Scott T. & Cullen, David A. & Toops, Todd J. & Green, Johney B. & Zhang, Feng-Yuan, 2016. "Thin liquid/gas diffusion layers for high-efficiency hydrogen production from water splitting," Applied Energy, Elsevier, vol. 177(C), pages 817-822.
    5. Wang, Qianqian & Tang, Fumin & Li, Bing & Dai, Haifeng & Zheng, Jim P. & Zhang, Cunman & Ming, Pingwen, 2022. "Investigation of the thermal responses under gas channel and land inside proton exchange membrane fuel cell with assembly pressure," Applied Energy, Elsevier, vol. 308(C).
    6. Li, Yuehua & Pei, Pucheng & Wu, Ziyao & Ren, Peng & Jia, Xiaoning & Chen, Dongfang & Huang, Shangwei, 2018. "Approaches to avoid flooding in association with pressure drop in proton exchange membrane fuel cells," Applied Energy, Elsevier, vol. 224(C), pages 42-51.
    7. Baricci, Andrea & Mereu, Riccardo & Messaggi, Mirko & Zago, Matteo & Inzoli, Fabio & Casalegno, Andrea, 2017. "Application of computational fluid dynamics to the analysis of geometrical features in PEM fuel cells flow fields with the aid of impedance spectroscopy," Applied Energy, Elsevier, vol. 205(C), pages 670-682.
    8. Niu, Zhiqiang & Bao, Zhiming & Wu, Jingtian & Wang, Yun & Jiao, Kui, 2018. "Two-phase flow in the mixed-wettability gas diffusion layer of proton exchange membrane fuel cells," Applied Energy, Elsevier, vol. 232(C), pages 443-450.
    9. Yang, Zirong & Du, Qing & Jia, Zhiwei & Yang, Chunguang & Xuan, Jin & Jiao, Kui, 2019. "A comprehensive proton exchange membrane fuel cell system model integrating various auxiliary subsystems," Applied Energy, Elsevier, vol. 256(C).
    10. Wu, Horng-Wen & Shih, Gin-Jang & Chen, Yi-Bin, 2018. "Effect of operational parameters on transport and performance of a PEM fuel cell with the best protrusive gas diffusion layer arrangement," Applied Energy, Elsevier, vol. 220(C), pages 47-58.
    11. Shahgaldi, Samaneh & Ozden, Adnan & Li, Xianguo & Hamdullahpur, Feridun, 2020. "A scaled-up proton exchange membrane fuel cell with enhanced performance and durability," Applied Energy, Elsevier, vol. 268(C).
    12. Zhao, Jian & Shahgaldi, Samaneh & Alaefour, Ibrahim & Xu, Qian & Li, Xianguo, 2018. "Gas permeability of catalyzed electrodes in polymer electrolyte membrane fuel cells," Applied Energy, Elsevier, vol. 209(C), pages 203-210.
    13. Andújar, J.M. & Segura, F. & Isorna, F. & Calderón, A.J., 2018. "Comprehensive diagnosis methodology for faults detection and identification, and performance improvement of Air-Cooled Polymer Electrolyte Fuel Cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 193-207.
    14. Islam, Mohammad Rafiqul & Shabani, Bahman & Rosengarten, Gary, 2016. "Nanofluids to improve the performance of PEM fuel cell cooling systems: A theoretical approach," Applied Energy, Elsevier, vol. 178(C), pages 660-671.
    15. Wang, Chuang & Liu, Mingkun & Li, Zengqun & Xing, Ziwen & Shu, Yue, 2023. "Performance improvement of twin-screw air expander used in PEMFC systems by two-phase expansion," Energy, Elsevier, vol. 273(C).
    16. Zhang, Xiaoqing & Yang, Jiapei & Ma, Xiao & Zhuge, Weilin & Shuai, Shijin, 2022. "Modelling and analysis on effects of penetration of microporous layer into gas diffusion layer in PEM fuel cells: Focusing on mass transport," Energy, Elsevier, vol. 254(PA).
    17. Barzegari, Mohammad M. & Dardel, Morteza & Alizadeh, Ebrahim & Ramiar, Abas, 2016. "Dynamic modeling and validation studies of dead-end cascade H2/O2 PEM fuel cell stack with integrated humidifier and separator," Applied Energy, Elsevier, vol. 177(C), pages 298-308.
    18. Ahmed Mohmed Dafalla & Lin Wei & Bereket Tsegai Habte & Jian Guo & Fangming Jiang, 2022. "Membrane Electrode Assembly Degradation Modeling of Proton Exchange Membrane Fuel Cells: A Review," Energies, MDPI, vol. 15(23), pages 1-26, December.
    19. Yi Zhang & Qiang Guo & Jie Song, 2023. "Internet-Distributed Hardware-in-the-Loop Simulation Platform for Plug-In Fuel Cell Hybrid Vehicles," Energies, MDPI, vol. 16(18), pages 1-17, September.
    20. Zhao, Chen & Wang, Fei, 2023. "Optimal performance and modeling study of air-cooled proton exchange membrane fuel cell with various bipolar plate structure," Applied Energy, Elsevier, vol. 345(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:277:y:2020:i:c:s0306261920310679. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.