IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v268y2020ics0306261920304682.html
   My bibliography  Save this article

A scaled-up proton exchange membrane fuel cell with enhanced performance and durability

Author

Listed:
  • Shahgaldi, Samaneh
  • Ozden, Adnan
  • Li, Xianguo
  • Hamdullahpur, Feridun

Abstract

A proton exchange membrane fuel cell with enhanced performance and durability has been developed by using graphene for the microporous layer on the cathode side, and short-side-chain ionomer in the catalyst layers and electrolyte membrane layer. The cell components are analyzed for their detailed morphological, microstructural, physical, and electrochemical characteristics, and the performance and durability are investigated following the established protocol of accelerated stress tests for a scaled-up cell with an active area of 45 cm2 at 75 °C and 35 kPag, and a range of reactant flow rate and relative humidity conditions. The results indicate that the graphene flakes are arranged in the in-plane direction of the cell, and coupled with the improved proton conductivity and water retention of the short-side chain ionomer and membrane, the cell exhibits excellent performance and durability, and is highly tolerant to the variations in the operating conditions. Before and after 30,000 cycles of the accelerated stress tests, the maximum power densities are around 1.13 W/cm2 and 0.75 W/cm2 for the high-flow fully humidified reactants, and about 0.77 W/cm2 and 0.50 W/cm2 for the low-flow and low-humidity conditions, respectively. The excellent performance and durability at low relative humidity operation are significantly important for practical applications.

Suggested Citation

  • Shahgaldi, Samaneh & Ozden, Adnan & Li, Xianguo & Hamdullahpur, Feridun, 2020. "A scaled-up proton exchange membrane fuel cell with enhanced performance and durability," Applied Energy, Elsevier, vol. 268(C).
  • Handle: RePEc:eee:appene:v:268:y:2020:i:c:s0306261920304682
    DOI: 10.1016/j.apenergy.2020.114956
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261920304682
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2020.114956?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wu, Horng-Wen, 2016. "A review of recent development: Transport and performance modeling of PEM fuel cells," Applied Energy, Elsevier, vol. 165(C), pages 81-106.
    2. Majlan, E.H. & Rohendi, D. & Daud, W.R.W. & Husaini, T. & Haque, M.A., 2018. "Electrode for proton exchange membrane fuel cells: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 89(C), pages 117-134.
    3. Saverio Latorrata & Paola Gallo Stampino & Cinzia Cristiani & Giovanni Dotelli, 2017. "Performance Evaluation and Durability Enhancement of FEP-Based Gas Diffusion Media for PEM Fuel Cells," Energies, MDPI, vol. 10(12), pages 1-17, December.
    4. Wang, Junye, 2017. "System integration, durability and reliability of fuel cells: Challenges and solutions," Applied Energy, Elsevier, vol. 189(C), pages 460-479.
    5. Ozden, Adnan & Shahgaldi, Samaneh & Li, Xianguo & Hamdullahpur, Feridun, 2019. "The impact of ionomer type on the morphological and microstructural degradations of proton exchange membrane fuel cell electrodes under freeze-thaw cycles," Applied Energy, Elsevier, vol. 238(C), pages 1048-1059.
    6. Shahgaldi, Samaneh & Alaefour, Ibrahim & Li, Xianguo, 2018. "The impact of short side chain ionomer on polymer electrolyte membrane fuel cell performance and durability," Applied Energy, Elsevier, vol. 217(C), pages 295-302.
    7. Zhao, Jian & Ozden, Adnan & Shahgaldi, Samaneh & Alaefour, Ibrahim E. & Li, Xianguo & Hamdullahpur, Feridun, 2018. "Effect of Pt loading and catalyst type on the pore structure of porous electrodes in polymer electrolyte membrane (PEM) fuel cells," Energy, Elsevier, vol. 150(C), pages 69-76.
    8. Wu, Horng-Wen & Shih, Gin-Jang & Chen, Yi-Bin, 2018. "Effect of operational parameters on transport and performance of a PEM fuel cell with the best protrusive gas diffusion layer arrangement," Applied Energy, Elsevier, vol. 220(C), pages 47-58.
    9. Xing, Lei & Shi, Weidong & Su, Huaneng & Xu, Qian & Das, Prodip K. & Mao, Baodong & Scott, Keith, 2019. "Membrane electrode assemblies for PEM fuel cells: A review of functional graded design and optimization," Energy, Elsevier, vol. 177(C), pages 445-464.
    10. Ozen, Dilek Nur & Timurkutluk, Bora & Altinisik, Kemal, 2016. "Effects of operation temperature and reactant gas humidity levels on performance of PEM fuel cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1298-1306.
    11. Ozden, Adnan & Shahgaldi, Samaneh & Li, Xianguo & Hamdullahpur, Feridun, 2018. "A graphene-based microporous layer for proton exchange membrane fuel cells: Characterization and performance comparison," Renewable Energy, Elsevier, vol. 126(C), pages 485-494.
    12. Zhao, Jian & Shahgaldi, Samaneh & Alaefour, Ibrahim & Xu, Qian & Li, Xianguo, 2018. "Gas permeability of catalyzed electrodes in polymer electrolyte membrane fuel cells," Applied Energy, Elsevier, vol. 209(C), pages 203-210.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang, Yange & Zhou, Xiangyang & Li, Bing & Zhang, Cunman, 2021. "Failure of cathode gas diffusion layer in 1 kW fuel cell stack under new European driving cycle," Applied Energy, Elsevier, vol. 303(C).
    2. Li, Bing & Wan, Kechuang & Xie, Meng & Chu, Tiankuo & Wang, Xiaolei & Li, Xiang & Yang, Daijun & Ming, Pingwen & Zhang, Cunman, 2022. "Durability degradation mechanism and consistency analysis for proton exchange membrane fuel cell stack," Applied Energy, Elsevier, vol. 314(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hou, Yuze & Deng, Hao & Pan, Fengwen & Chen, Wenmiao & Du, Qing & Jiao, Kui, 2019. "Pore-scale investigation of catalyst layer ingredient and structure effect in proton exchange membrane fuel cell," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    2. Zhao, Jian & Li, Xianguo & Shum, Chris & McPhee, John, 2023. "Control-oriented computational fuel cell dynamics modeling – Model order reduction vs. computational speed," Energy, Elsevier, vol. 266(C).
    3. Shahgaldi, Samaneh & Alaefour, Ibrahim & Li, Xianguo, 2018. "Impact of manufacturing processes on proton exchange membrane fuel cell performance," Applied Energy, Elsevier, vol. 225(C), pages 1022-1032.
    4. Zhang, Xiaoqing & Yang, Jiapei & Ma, Xiao & Zhuge, Weilin & Shuai, Shijin, 2022. "Modelling and analysis on effects of penetration of microporous layer into gas diffusion layer in PEM fuel cells: Focusing on mass transport," Energy, Elsevier, vol. 254(PA).
    5. Ahmed Mohmed Dafalla & Lin Wei & Bereket Tsegai Habte & Jian Guo & Fangming Jiang, 2022. "Membrane Electrode Assembly Degradation Modeling of Proton Exchange Membrane Fuel Cells: A Review," Energies, MDPI, vol. 15(23), pages 1-26, December.
    6. Tzelepis, Stefanos & Kavadias, Kosmas A. & Marnellos, George E. & Xydis, George, 2021. "A review study on proton exchange membrane fuel cell electrochemical performance focusing on anode and cathode catalyst layer modelling at macroscopic level," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    7. Aldakheel, F. & Ismail, M.S. & Hughes, K.J. & Ingham, D.B. & Ma, L. & Pourkashanian, M. & Cumming, D. & Smith, R., 2020. "Gas permeability, wettability and morphology of gas diffusion layers before and after performing a realistic ex-situ compression test," Renewable Energy, Elsevier, vol. 151(C), pages 1082-1091.
    8. Riccardo Balzarotti & Saverio Latorrata & Marco Mariani & Paola Gallo Stampino & Giovanni Dotelli, 2020. "Optimization of Perfluoropolyether-Based Gas Diffusion Media Preparation for PEM Fuel Cells," Energies, MDPI, vol. 13(7), pages 1-14, April.
    9. Li, Yuehua & Pei, Pucheng & Wu, Ziyao & Ren, Peng & Jia, Xiaoning & Chen, Dongfang & Huang, Shangwei, 2018. "Approaches to avoid flooding in association with pressure drop in proton exchange membrane fuel cells," Applied Energy, Elsevier, vol. 224(C), pages 42-51.
    10. Abdollahipour, Armin & Sayyaadi, Hoseyn, 2022. "A novel electrochemical refrigeration system based on the combined proton exchange membrane fuel cell-electrolyzer," Applied Energy, Elsevier, vol. 316(C).
    11. Huo, Sen & Cooper, Nathanial James & Smith, Travis Lee & Park, Jae Wan & Jiao, Kui, 2017. "Experimental investigation on PEM fuel cell cold start behavior containing porous metal foam as cathode flow distributor," Applied Energy, Elsevier, vol. 203(C), pages 101-114.
    12. Niu, Zhiqiang & Bao, Zhiming & Wu, Jingtian & Wang, Yun & Jiao, Kui, 2018. "Two-phase flow in the mixed-wettability gas diffusion layer of proton exchange membrane fuel cells," Applied Energy, Elsevier, vol. 232(C), pages 443-450.
    13. Qiu, Diankai & Peng, Linfa & Lai, Xinmin & Ni, Meng & Lehnert, Werner, 2019. "Mechanical failure and mitigation strategies for the membrane in a proton exchange membrane fuel cell," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    14. Marco Mariani & Andrea Basso Peressut & Saverio Latorrata & Riccardo Balzarotti & Maurizio Sansotera & Giovanni Dotelli, 2021. "The Role of Fluorinated Polymers in the Water Management of Proton Exchange Membrane Fuel Cells: A Review," Energies, MDPI, vol. 14(24), pages 1-17, December.
    15. Yang, Zirong & Du, Qing & Jia, Zhiwei & Yang, Chunguang & Xuan, Jin & Jiao, Kui, 2019. "A comprehensive proton exchange membrane fuel cell system model integrating various auxiliary subsystems," Applied Energy, Elsevier, vol. 256(C).
    16. Wilberforce, Tabbi & Ijaodola, O. & Ogungbemi, Emmanuel & Khatib, F.N. & Leslie, T. & El-Hassan, Zaki & Thomposon, J. & Olabi, A.G., 2019. "Technical evaluation of proton exchange membrane (PEM) fuel cell performance – A review of the effects of bipolar plates coating," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    17. Dong, Pengcheng & Xie, Gongnan & Ni, Meng, 2020. "The mass transfer characteristics and energy improvement with various partially blocked flow channels in a PEM fuel cell," Energy, Elsevier, vol. 206(C).
    18. Lin, Rui & Wang, Hong & Zhu, Yu, 2021. "Optimizing the structural design of cathode catalyst layer for PEM fuel cells for improving mass-specific power density," Energy, Elsevier, vol. 221(C).
    19. Zhang, Yong & He, Shirong & Jiang, Xiaohui & Wang, Zhuo & Yang, Xi & Fang, Haoyan & Li, Qiming & Cao, Jing, 2024. "Investigation on performance of full-scale proton exchange membrane fuel cell: Porous foam flow field with integrated bipolar plate/gas diffusion layer," Energy, Elsevier, vol. 287(C).
    20. Ruzzante, Pascal & Li, Xianguo, 2023. "3D hybrid stochastic reconstruction of catalyst layers in proton exchange membrane fuel cells from 2D images," Energy, Elsevier, vol. 281(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:268:y:2020:i:c:s0306261920304682. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.