IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v374y2024ics0306261924013953.html
   My bibliography  Save this article

A novel ‘3D + digital twin + 3D’ upscaling strategy for predicting the detailed multi-physics distributions in a commercial-size proton exchange membrane fuel cell stack

Author

Listed:
  • Bai, Fan
  • Tang, Zhiyi
  • Yin, Ren-Jie
  • Quan, Hong-Bing
  • Chen, Lei
  • Dai, David
  • Tao, Wen-Quan

Abstract

With the rapid development of proton exchange membrane fuel cell (PEMFC) commercialization, a comprehensive knowledge of multi-physics fields in large-scale PEMFC stacks has become ever more critical. Although conventional three-dimensional computational fluid dynamic (CFD) models have achieved great success, the application in the commercial-size stack-scale simulation remains inapplicable due to enormous computational resource requirements. Herein, based on the latest 3D CFD model, multi-physics digital twin (DT) technology and 3D stack flow distribution prediction model, a novel multi-scale upscaling prediction model is proposed. The voltage, water and thermal management characteristics of a 164-cell PEMFC stack with an active electrode area of 292.5 cm2 are studied and analyzed in details. For the analysis of commercial-size PEMFC stacks, the most comprehensive multi-physics fields are covered in this paper to date. And the results suggest that by introducing the DT technology, the time requirement of the multi-physics field prediction for unit scale prediction can be reduced by hundreds of thousands of times with a maximum global relative deviation of 1% under 10 groups of random test conditions, giving a solution from the cell scale to stack scale performance prediction, design, heat and thermal management in the PEMFC research and application.

Suggested Citation

  • Bai, Fan & Tang, Zhiyi & Yin, Ren-Jie & Quan, Hong-Bing & Chen, Lei & Dai, David & Tao, Wen-Quan, 2024. "A novel ‘3D + digital twin + 3D’ upscaling strategy for predicting the detailed multi-physics distributions in a commercial-size proton exchange membrane fuel cell stack," Applied Energy, Elsevier, vol. 374(C).
  • Handle: RePEc:eee:appene:v:374:y:2024:i:c:s0306261924013953
    DOI: 10.1016/j.apenergy.2024.124012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924013953
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.124012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xiong, Kangning & Wu, Wei & Wang, Shuangfeng & Zhang, Lin, 2021. "Modeling, design, materials and fabrication of bipolar plates for proton exchange membrane fuel cell: A review," Applied Energy, Elsevier, vol. 301(C).
    2. Aneke, Mathew & Wang, Meihong, 2016. "Energy storage technologies and real life applications – A state of the art review," Applied Energy, Elsevier, vol. 179(C), pages 350-377.
    3. Su, Guoqing & Yang, Daijun & Xiao, Qiangfeng & Dai, Haiqin & Zhang, Cunman, 2021. "Effects of vortexes in feed header on air flow distribution of PEMFC stack: CFD simulation and optimization for better uniformity," Renewable Energy, Elsevier, vol. 173(C), pages 498-506.
    4. He, Pu & Mu, Yu-Tong & Park, Jae Wan & Tao, Wen-Quan, 2020. "Modeling of the effects of cathode catalyst layer design parameters on performance of polymer electrolyte membrane fuel cell," Applied Energy, Elsevier, vol. 277(C).
    5. Chen, Xi & Yang, Chen & Sun, Yun & Liu, Qinxiao & Wan, Zhongmin & Kong, Xiangzhong & Tu, Zhengkai & Wang, Xiaodong, 2022. "Water management and structure optimization study of nickel metal foam as flow distributors in proton exchange membrane fuel cell," Applied Energy, Elsevier, vol. 309(C).
    6. Zhang, Ruiyuan & Min, Ting & Chen, Li & Kang, Qinjun & He, Ya-Ling & Tao, Wen-Quan, 2019. "Pore-scale and multiscale study of effects of Pt degradation on reactive transport processes in proton exchange membrane fuel cells," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    7. Ismail, M.S. & Ingham, D.B. & Ma, L. & Hughes, K.J. & Pourkashanian, M., 2017. "Effects of catalyst agglomerate shape in polymer electrolyte fuel cells investigated by a multi-scale modelling framework," Energy, Elsevier, vol. 122(C), pages 420-430.
    8. Zhang, Guobin & Yuan, Hao & Wang, Yun & Jiao, Kui, 2019. "Three-dimensional simulation of a new cooling strategy for proton exchange membrane fuel cell stack using a non-isothermal multiphase model," Applied Energy, Elsevier, vol. 255(C).
    9. Bai, Fan & Quan, Hong-Bing & Yin, Ren-Jie & Zhang, Zhuo & Jin, Shu-Qi & He, Pu & Mu, Yu-Tong & Gong, Xiao-Ming & Tao, Wen-Quan, 2022. "Three-dimensional multi-field digital twin technology for proton exchange membrane fuel cells," Applied Energy, Elsevier, vol. 324(C).
    10. Yin, Ren-Jie & Zeng, Wen-Chao & Bai, Fan & Chen, Li & Tao, Wen-Quan, 2024. "Study on the effects of manifold structure on the gas flow distribution uniformity of anode of PEMFC stack with 140-cell," Renewable Energy, Elsevier, vol. 221(C).
    11. Wang, Yun & Chen, Ken S. & Mishler, Jeffrey & Cho, Sung Chan & Adroher, Xavier Cordobes, 2011. "A review of polymer electrolyte membrane fuel cells: Technology, applications, and needs on fundamental research," Applied Energy, Elsevier, vol. 88(4), pages 981-1007, April.
    12. Yin, Cong & Song, Yating & Liu, Meiru & Gao, Yan & Li, Kai & Qiao, Zemin & Tang, Hao, 2022. "Investigation of proton exchange membrane fuel cell stack with inversely phased wavy flow field design," Applied Energy, Elsevier, vol. 305(C).
    13. Huang, Fuxiang & Qiu, Diankai & Xu, Zhutian & Peng, Linfa & Lai, Xinmin, 2021. "Analysis and improvement of flow distribution in manifold for proton exchange membrane fuel cell stacks," Energy, Elsevier, vol. 226(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sarjuni, C.A. & Lim, B.H. & Majlan, E.H. & Rosli, M.I., 2024. "A review: Fluid dynamic and mass transport behaviour in a proton exchange membrane fuel cell stack," Renewable and Sustainable Energy Reviews, Elsevier, vol. 193(C).
    2. Yin, Cong & Cao, Jishen & Tang, Qilin & Su, Yanghuai & Wang, Renkang & Li, Kai & Tang, Hao, 2022. "Study of internal performance of commercial-size fuel cell stack with 3D multi-physical model and high resolution current mapping," Applied Energy, Elsevier, vol. 323(C).
    3. Yu, Rui Jiao & Guo, Hang & Ye, Fang & Chen, Hao, 2022. "Multi-parameter optimization of stepwise distribution of parameters of gas diffusion layer and catalyst layer for PEMFC peak power density," Applied Energy, Elsevier, vol. 324(C).
    4. Saeidfar, Asal & Yesilyurt, Serhat, 2023. "Numerical investigation of the effects of catalyst layer composition and channel to rib width ratios for low platinum loaded PEMFCs," Applied Energy, Elsevier, vol. 339(C).
    5. Zhou, Kehan & Liu, Zhiwei & Zhang, Xin & Liu, Hang & Meng, Nan & Huang, Jianmei & Qi, Mingjing & Song, Xizhen & Yan, Xiaojun, 2022. "A kW-level integrated propulsion system for UAV powered by PEMFC with inclined cathode flow structure design," Applied Energy, Elsevier, vol. 328(C).
    6. Xu, Jiamin & Zhang, Caizhi & Wan, Zhongmin & Chen, Xi & Chan, Siew Hwa & Tu, Zhengkai, 2022. "Progress and perspectives of integrated thermal management systems in PEM fuel cell vehicles: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    7. Yuan, Hao & Dai, Haifeng & Ming, Pingwen & Li, Sida & Wei, Xuezhe, 2022. "A new insight into the effects of agglomerate parameters on internal dynamics of proton exchange membrane fuel cell by an advanced impedance dimension model," Energy, Elsevier, vol. 253(C).
    8. Chen, Qin & Zhang, Guobin & Zhang, Xuzhong & Sun, Cheng & Jiao, Kui & Wang, Yun, 2021. "Thermal management of polymer electrolyte membrane fuel cells: A review of cooling methods, material properties, and durability," Applied Energy, Elsevier, vol. 286(C).
    9. Yin, Cong & Yang, Haiyu & Liu, Yu & Wen, Xuhui & Xie, Guangyou & Wang, Renkang & Tang, Hao, 2023. "Numerical and experimental investigations on internal humidifying designs for proton exchange membrane fuel cell stack," Applied Energy, Elsevier, vol. 348(C).
    10. Fan, Lixin & Tu, Zhengkai & Chan, Siew Hwa, 2022. "Technological and Engineering design of a megawatt proton exchange membrane fuel cell system," Energy, Elsevier, vol. 257(C).
    11. Wan, Yue & Qiu, Diankai & Yi, Peiyun & Peng, Linfa & Lai, Xinmin, 2022. "Design and optimization of gradient wettability pore structure of adaptive PEM fuel cell cathode catalyst layer," Applied Energy, Elsevier, vol. 312(C).
    12. Li, Zhengyan & Xian, Lei & Wang, Qiuyu & Wang, Junwei & Chen, Lei & Tao, Wen-Quan, 2024. "Performance enhancement of proton exchange membrane fuel cell by utilizing a blocked regulated tri-serpentine flow field: Comprehensive optimization with variable block heights and multiple auxiliary ," Applied Energy, Elsevier, vol. 372(C).
    13. Zhang, Yong & He, Shirong & Jiang, Xiaohui & Yang, Xi & Wang, Zhuo & Zhang, Shuanyang & Cao, Jing & Fang, Haoyan & Li, Qiming, 2024. "Full-scale three-dimensional simulation of air cooling metal bipolar plate proton exchange membrane fuel cell stack considering a non-isothermal multiphase model," Applied Energy, Elsevier, vol. 357(C).
    14. Zhou, Yu & Chen, Ben, 2023. "Investigation of optimization and evaluation criteria for flow field in proton exchange membrane fuel cell: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    15. Bai, Xingying & Luo, Lizhong & Huang, Bi & Huang, Zhe & Jian, Qifei, 2021. "Flow characteristics analysis for multi-path hydrogen supply within proton exchange membrane fuel cell stack," Applied Energy, Elsevier, vol. 301(C).
    16. Li, Bing & Wan, Kechuang & Xie, Meng & Chu, Tiankuo & Wang, Xiaolei & Li, Xiang & Yang, Daijun & Ming, Pingwen & Zhang, Cunman, 2022. "Durability degradation mechanism and consistency analysis for proton exchange membrane fuel cell stack," Applied Energy, Elsevier, vol. 314(C).
    17. Xu, Boshi & Yang, Yang & Li, Jun & Ye, Dingding & Wang, Yang & Zhang, Liang & Zhu, Xun & Liao, Qiang, 2024. "A comprehensive study of parameters distribution in a short PEM water electrolyzer stack utilizing a full-scale multi-physics model," Energy, Elsevier, vol. 300(C).
    18. Shao, Yangbin & Xu, Liangfei & Hu, Zunyan & Xu, Ling & Zhao, Yang & Zhao, Guanlei & Li, Jianqiu & Ouyang, Minggao, 2023. "Investigation on the performance heterogeneity within a fuel cell stack considering non-isopotential of bipolar plates," Energy, Elsevier, vol. 263(PB).
    19. Yin, Ren-Jie & Zeng, Wen-Chao & Bai, Fan & Chen, Li & Tao, Wen-Quan, 2024. "Study on the effects of manifold structure on the gas flow distribution uniformity of anode of PEMFC stack with 140-cell," Renewable Energy, Elsevier, vol. 221(C).
    20. Wan, Zhongmin & Yan, Hanzhang & Sun, Yun & Yang, Chen & Chen, Xi & Kong, Xiangzhong & Chen, Yiyu & Tu, Zhengkai & Wang, Xiaodong, 2023. "Thermal management improvement of air-cooled proton exchange membrane fuel cell by using metal foam flow field," Applied Energy, Elsevier, vol. 333(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:374:y:2024:i:c:s0306261924013953. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.