IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v59y2016icp1298-1306.html
   My bibliography  Save this article

Effects of operation temperature and reactant gas humidity levels on performance of PEM fuel cells

Author

Listed:
  • Ozen, Dilek Nur
  • Timurkutluk, Bora
  • Altinisik, Kemal

Abstract

In this study, the effects of operation conditions on the performance of a polymer electrolyte membrane fuel cell are investigated and the results are presented together with a comprehensive literature review on the related topics. The cells with 25cm2 active area are tested for different inlet gas humidification levels and inlet temperatures, operating temperatures and oxidant type. The cells are characterized by the performance curves together with the cell resistance measurements. The results indicate that the humidification of the inlet gases positively affect the cell performance. However, the improvement in the cell performance is higher when the cathode gas is humidified. In addition, the operating temperature and the inlet gas temperatures are found to be the most significant parameters. The cell performance tends to increase significantly with increasing the operating and inlet gas temperatures. The effect of the oxidant type is also considered and the cell tested with pure oxygen shows slightly higher performance.

Suggested Citation

  • Ozen, Dilek Nur & Timurkutluk, Bora & Altinisik, Kemal, 2016. "Effects of operation temperature and reactant gas humidity levels on performance of PEM fuel cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1298-1306.
  • Handle: RePEc:eee:rensus:v:59:y:2016:i:c:p:1298-1306
    DOI: 10.1016/j.rser.2016.01.040
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032116000708
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2016.01.040?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Islam, M.R. & Shabani, B. & Rosengarten, G. & Andrews, J., 2015. "The potential of using nanofluids in PEM fuel cell cooling systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 523-539.
    2. Jian, Qi-fei & Ma, Guang-qing & Qiu, Xiao-liang, 2014. "Influences of gas relative humidity on the temperature of membrane in PEMFC with interdigitated flow field," Renewable Energy, Elsevier, vol. 62(C), pages 129-136.
    3. Abdollahzadeh, M. & Pascoa, J.C. & Ranjbar, A.A. & Esmaili, Q., 2014. "Analysis of PEM (Polymer Electrolyte Membrane) fuel cell cathode two-dimensional modeling," Energy, Elsevier, vol. 68(C), pages 478-494.
    4. Iranzo, Alfredo & Boillat, Pierre & Biesdorf, Johannes & Salva, Antonio, 2015. "Investigation of the liquid water distributions in a 50 cm2 PEM fuel cell: Effects of reactants relative humidity, current density, and cathode stoichiometry," Energy, Elsevier, vol. 82(C), pages 914-921.
    5. Erdinc, O. & Uzunoglu, M., 2010. "Recent trends in PEM fuel cell-powered hybrid systems: Investigation of application areas, design architectures and energy management approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2874-2884, December.
    6. Xing, Lei & Liu, Xiaoteng & Alaje, Taiwo & Kumar, Ravi & Mamlouk, Mohamed & Scott, Keith, 2014. "A two-phase flow and non-isothermal agglomerate model for a proton exchange membrane (PEM) fuel cell," Energy, Elsevier, vol. 73(C), pages 618-634.
    7. Huang, Zhen-Ming & Su, Ay & Liu, Ying-Chieh, 2014. "Development and testing of a hybrid system with a sub-kW open-cathode type PEM (proton exchange membrane) fuel cell stack," Energy, Elsevier, vol. 72(C), pages 547-553.
    8. Mortazavi, Mehdi & Tajiri, Kazuya, 2015. "Two-phase flow pressure drop in flow channels of proton exchange membrane fuel cells: Review of experimental approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 296-317.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhao, Junjie & Tu, Zhengkai & Chan, Siew Hwa, 2022. "In-situ measurement of humidity distribution and its effect on the performance of a proton exchange membrane fuel cell," Energy, Elsevier, vol. 239(PD).
    2. Bai, Fan & Quan, Hong-Bing & Yin, Ren-Jie & Zhang, Zhuo & Jin, Shu-Qi & He, Pu & Mu, Yu-Tong & Gong, Xiao-Ming & Tao, Wen-Quan, 2022. "Three-dimensional multi-field digital twin technology for proton exchange membrane fuel cells," Applied Energy, Elsevier, vol. 324(C).
    3. Dapeng Gong & Sichuan Xu & Yuan Gao, 2023. "Investigation of Water and Heat Transfer Mechanism in PEMFCs Based on a Two-Phase Non-Isothermal Model," Energies, MDPI, vol. 16(2), pages 1-20, January.
    4. Zhao, Jian & Li, Xianguo & Shum, Chris & McPhee, John, 2023. "Control-oriented computational fuel cell dynamics modeling – Model order reduction vs. computational speed," Energy, Elsevier, vol. 266(C).
    5. Wilberforce, Tabbi & Ijaodola, O. & Ogungbemi, Emmanuel & Khatib, F.N. & Leslie, T. & El-Hassan, Zaki & Thomposon, J. & Olabi, A.G., 2019. "Technical evaluation of proton exchange membrane (PEM) fuel cell performance – A review of the effects of bipolar plates coating," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    6. Ogungbemi, Emmanuel & Ijaodola, Oluwatosin & Khatib, F.N. & Wilberforce, Tabbi & El Hassan, Zaki & Thompson, James & Ramadan, Mohamad & Olabi, A.G., 2019. "Fuel cell membranes – Pros and cons," Energy, Elsevier, vol. 172(C), pages 155-172.
    7. Mojtaba Baghban Yousefkhani & Hossein Ghadamian & Keyvan Daneshvar & Nima Alizadeh & Brendy C. Rincon Troconis, 2020. "Investigation of the Fuel Utilization Factor in PEM Fuel Cell Considering the Effect of Relative Humidity at the Cathode," Energies, MDPI, vol. 13(22), pages 1-11, November.
    8. Yang, Zirong & Du, Qing & Jia, Zhiwei & Yang, Chunguang & Xuan, Jin & Jiao, Kui, 2019. "A comprehensive proton exchange membrane fuel cell system model integrating various auxiliary subsystems," Applied Energy, Elsevier, vol. 256(C).
    9. Noor H. Jawad & Ali Amer Yahya & Ali R. Al-Shathr & Hussein G. Salih & Khalid T. Rashid & Saad Al-Saadi & Adnan A. AbdulRazak & Issam K. Salih & Adel Zrelli & Qusay F. Alsalhy, 2022. "Fuel Cell Types, Properties of Membrane, and Operating Conditions: A Review," Sustainability, MDPI, vol. 14(21), pages 1-48, November.
    10. Markus Pollak & Philipp Bekemeyer & Nicholas Lemke & Wilhelm Tegethoff & Juergen Koehler, 2023. "Analysis of Surrogate Models for Vapour Transport and Distribution in a Hollow Fibre Membrane Humidifier," Energies, MDPI, vol. 16(6), pages 1-23, March.
    11. Qiu, Diankai & Peng, Linfa & Lai, Xinmin & Ni, Meng & Lehnert, Werner, 2019. "Mechanical failure and mitigation strategies for the membrane in a proton exchange membrane fuel cell," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    12. Hoang Nghia Vu & Dinh Hoang Trinh & Dat Truong Le Tri & Sangseok Yu, 2023. "Bypass Configurations of Membrane Humidifiers for Water Management in PEM Fuel Cells," Energies, MDPI, vol. 16(19), pages 1-17, October.
    13. Fu, Hao & Shen, Jiong & Sun, Li & Lee, Kwang Y., 2021. "In-depth characteristic analysis and wide range optimal operation of fuel cell using multi-model predictive control," Energy, Elsevier, vol. 234(C).
    14. Li, Yuehua & Pei, Pucheng & Wu, Ziyao & Ren, Peng & Jia, Xiaoning & Chen, Dongfang & Huang, Shangwei, 2018. "Approaches to avoid flooding in association with pressure drop in proton exchange membrane fuel cells," Applied Energy, Elsevier, vol. 224(C), pages 42-51.
    15. He, Pu & Mu, Yu-Tong & Park, Jae Wan & Tao, Wen-Quan, 2020. "Modeling of the effects of cathode catalyst layer design parameters on performance of polymer electrolyte membrane fuel cell," Applied Energy, Elsevier, vol. 277(C).
    16. Shahgaldi, Samaneh & Ozden, Adnan & Li, Xianguo & Hamdullahpur, Feridun, 2020. "A scaled-up proton exchange membrane fuel cell with enhanced performance and durability," Applied Energy, Elsevier, vol. 268(C).
    17. Dongxu Li & Siwei Li & Zheshu Ma & Bing Xu & Zhanghao Lu & Yanju Li & Meng Zheng, 2021. "Ecological Performance Optimization of a High Temperature Proton Exchange Membrane Fuel Cell," Mathematics, MDPI, vol. 9(12), pages 1-15, June.
    18. Liu, Yongfeng & Wang, Na & Pei, Pucheng & Yao, Shengzhuo & Wang, Fang, 2018. "Asymptotic analysis of anode relative humidity effects on the fastest voltage decay single cell in a stack," Energy, Elsevier, vol. 151(C), pages 490-500.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chowdhury, Mohammad Ziauddin & Timurkutluk, Bora, 2018. "Transport phenomena of convergent and divergent serpentine flow fields for PEMFC," Energy, Elsevier, vol. 161(C), pages 104-117.
    2. Salva, J. Antonio & Iranzo, Alfredo & Rosa, Felipe & Tapia, Elvira, 2016. "Validation of cell voltage and water content in a PEM (polymer electrolyte membrane) fuel cell model using neutron imaging for different operating conditions," Energy, Elsevier, vol. 101(C), pages 100-112.
    3. Hu, Junming & Li, Jianqiu & Xu, Liangfei & Huang, Fusen & Ouyang, Minggao, 2016. "Analytical calculation and evaluation of water transport through a proton exchange membrane fuel cell based on a one-dimensional model," Energy, Elsevier, vol. 111(C), pages 869-883.
    4. Wu, Horng-Wen, 2016. "A review of recent development: Transport and performance modeling of PEM fuel cells," Applied Energy, Elsevier, vol. 165(C), pages 81-106.
    5. Yang, Zirong & Du, Qing & Jia, Zhiwei & Yang, Chunguang & Xuan, Jin & Jiao, Kui, 2019. "A comprehensive proton exchange membrane fuel cell system model integrating various auxiliary subsystems," Applied Energy, Elsevier, vol. 256(C).
    6. Abdollahzadeh, M. & Ribeirinha, P. & Boaventura, M. & Mendes, A., 2018. "Three-dimensional modeling of PEMFC with contaminated anode fuel," Energy, Elsevier, vol. 152(C), pages 939-959.
    7. Xing, Lei & Du, Shangfeng & Chen, Rui & Mamlouk, Mohamed & Scott, Keith, 2016. "Anode partial flooding modelling of proton exchange membrane fuel cells: Model development and validation," Energy, Elsevier, vol. 96(C), pages 80-95.
    8. Elisabetta Arato & Marzia Pinna & Michela Mazzoccoli & Barbara Bosio, 2016. "Gas-Phase Mass-Transfer Resistances at Polymeric Electrolyte Membrane Fuel Cells Electrodes: Theoretical Analysis on the Effectiveness of Interdigitated and Serpentine Flow Arrangements," Energies, MDPI, vol. 9(4), pages 1-16, March.
    9. Qiu, Diankai & Peng, Linfa & Tang, Jiayu & Lai, Xinmin, 2020. "Numerical analysis of air-cooled proton exchange membrane fuel cells with various cathode flow channels," Energy, Elsevier, vol. 198(C).
    10. Mojtaba Baghban Yousefkhani & Hossein Ghadamian & Keyvan Daneshvar & Nima Alizadeh & Brendy C. Rincon Troconis, 2020. "Investigation of the Fuel Utilization Factor in PEM Fuel Cell Considering the Effect of Relative Humidity at the Cathode," Energies, MDPI, vol. 13(22), pages 1-11, November.
    11. Pei, Houchang & Xiao, Chenguang & Tu, Zhengkai, 2022. "Experimental study on liquid water formation characteristics in a novel transparent proton exchange membrane fuel cell," Applied Energy, Elsevier, vol. 321(C).
    12. Xing, Lei & Cai, Qiong & Xu, Chenxi & Liu, Chunbo & Scott, Keith & Yan, Yongsheng, 2016. "Numerical study of the effect of relative humidity and stoichiometric flow ratio on PEM (proton exchange membrane) fuel cell performance with various channel lengths: An anode partial flooding modelli," Energy, Elsevier, vol. 106(C), pages 631-645.
    13. Rostami, Leila & Mohamad Gholy Nejad, Puriya & Vatani, Ali, 2016. "A numerical investigation of serpentine flow channel with different bend sizes in polymer electrolyte membrane fuel cells," Energy, Elsevier, vol. 97(C), pages 400-410.
    14. Afshari, E. & Mosharaf-Dehkordi, M. & Rajabian, H., 2017. "An investigation of the PEM fuel cells performance with partially restricted cathode flow channels and metal foam as a flow distributor," Energy, Elsevier, vol. 118(C), pages 705-715.
    15. Yang, Luo & Nik-Ghazali, Nik-Nazri & Ali, Mohammed A.H. & Chong, Wen Tong & Yang, Zhenzhong & Liu, Haichao, 2023. "A review on thermal management in proton exchange membrane fuel cells: Temperature distribution and control," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    16. Chen, Ben & Ke, Wandi & Luo, Maji & Wang, Jun & Tu, Zhengkai & Pan, Mu & Zhang, Haining & Liu, Xiaowei & Liu, Wei, 2015. "Operation characteristics and carbon corrosion of PEMFC (Proton exchange membrane fuel cell) with dead-ended anode for high hydrogen utilization," Energy, Elsevier, vol. 91(C), pages 799-806.
    17. Asma Mohamad Aris & Bahman Shabani, 2015. "Sustainable Power Supply Solutions for Off-Grid Base Stations," Energies, MDPI, vol. 8(10), pages 1-38, September.
    18. Yin, Cong & Gao, Jianlong & Wen, Xuhui & Xie, Guangyou & Yang, Chunhua & Fang, Honglin & Tang, Hao, 2016. "In situ investigation of proton exchange membrane fuel cell performance with novel segmented cell design and a two-phase flow model," Energy, Elsevier, vol. 113(C), pages 1071-1089.
    19. Abdin, Z. & Webb, C.J. & Gray, E.MacA., 2016. "PEM fuel cell model and simulation in Matlab–Simulink based on physical parameters," Energy, Elsevier, vol. 116(P1), pages 1131-1144.
    20. Li, Yuehua & Pei, Pucheng & Ma, Ze & Ren, Peng & Wu, Ziyao & Chen, Dongfang & Huang, Hao, 2019. "Characteristic analysis in lowering current density based on pressure drop for avoiding flooding in proton exchange membrane fuel cell," Applied Energy, Elsevier, vol. 248(C), pages 321-329.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:59:y:2016:i:c:p:1298-1306. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.