IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v252y2019ic22.html
   My bibliography  Save this article

The coordinated control strategy for isolated DC microgrid based on adaptive storage adjustment without communication

Author

Listed:
  • Mi, Yang
  • Chen, Xin
  • Ji, Hongpeng
  • Ji, Liang
  • Fu, Yang
  • Wang, Chengshan
  • Wang, Jianhui

Abstract

In the DC microgrid, renewable energy sources are increasingly applied as distributed generations to replace the traditional energy at remote locations. Meanwhile, energy storage system needs to be employed to maintain the balance between fluctuated power generation and load consumption. In this paper, the coordinated control strategy is proposed for the stability operation of isolated DC microgrid. In order to avoid over-charging or deep-discharging for certain energy storage units, the novel hierarchical droop control scheme is introduced to balance state of charge among energy storage units to. Additionally, the virtual inertia control is designed to adjust the output power of renewable energy generation, and the fuzzy iterative method is added to reduce the voltage deviation induced by droop control. According to the bus voltage variation and the preset value of threshold, the load side control is constructed to guarantee the stability operation of high-priority loads. Finally, the autonomous operation of isolated DC microgrid can be realized without relying on communication. Comprehensive cases based on real-time digital simulator are provided to demonstrate the effectiveness of the proposed control strategy.

Suggested Citation

  • Mi, Yang & Chen, Xin & Ji, Hongpeng & Ji, Liang & Fu, Yang & Wang, Chengshan & Wang, Jianhui, 2019. "The coordinated control strategy for isolated DC microgrid based on adaptive storage adjustment without communication," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
  • Handle: RePEc:eee:appene:v:252:y:2019:i:c:22
    DOI: 10.1016/j.apenergy.2019.113465
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261919311390
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2019.113465?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Stadler, Michael & Cardoso, Gonçalo & Mashayekh, Salman & Forget, Thibault & DeForest, Nicholas & Agarwal, Ankit & Schönbein, Anna, 2016. "Value streams in microgrids: A literature review," Applied Energy, Elsevier, vol. 162(C), pages 980-989.
    2. Adefarati, T. & Bansal, R.C., 2017. "Reliability assessment of distribution system with the integration of renewable distributed generation," Applied Energy, Elsevier, vol. 185(P1), pages 158-171.
    3. Serban, Ioan, 2018. "A control strategy for microgrids: Seamless transfer based on a leading inverter with supercapacitor energy storage system," Applied Energy, Elsevier, vol. 221(C), pages 490-507.
    4. Riverso, Stefano & Tucci, Michele & Vasquez, Juan C. & Guerrero, Josep M. & Ferrari-Trecate, Giancarlo, 2018. "Stabilizing plug-and-play regulators and secondary coordinated control for AC islanded microgrids with bus-connected topology," Applied Energy, Elsevier, vol. 210(C), pages 914-924.
    5. Yuan, Minghan & Fu, Yang & Mi, Yang & Li, Zhenkun & Wang, Chengshan, 2019. "Hierarchical control of DC microgrid with dynamical load power sharing," Applied Energy, Elsevier, vol. 239(C), pages 1-11.
    6. Hu, Jiefeng & Xu, Yinliang & Cheng, Ka Wai & Guerrero, Josep M., 2018. "A model predictive control strategy of PV-Battery microgrid under variable power generations and load conditions," Applied Energy, Elsevier, vol. 221(C), pages 195-203.
    7. Adefarati, T. & Bansal, R.C., 2019. "Reliability, economic and environmental analysis of a microgrid system in the presence of renewable energy resources," Applied Energy, Elsevier, vol. 236(C), pages 1089-1114.
    8. Ashabani, Mahdi & Gooi, Hoay Beng & Guerrero, Josep M., 2018. "Designing high-order power-source synchronous current converters for islanded and grid-connected microgrids," Applied Energy, Elsevier, vol. 219(C), pages 370-384.
    9. Lv, Tianguang & Ai, Qian, 2016. "Interactive energy management of networked microgrids-based active distribution system considering large-scale integration of renewable energy resources," Applied Energy, Elsevier, vol. 163(C), pages 408-422.
    10. Raza, Muhammad & Collados, Carlos & Gomis-Bellmunt, Oriol, 2017. "Reactive power management in an offshore AC network having multiple voltage source converters," Applied Energy, Elsevier, vol. 206(C), pages 793-803.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Sirui & Li, Peng & Ji, Haoran & Yu, Hao & Yan, Jinyue & Wu, Jianzhong & Wang, Chengshan, 2021. "Operational flexibility of active distribution networks with the potential from data centers," Applied Energy, Elsevier, vol. 293(C).
    2. Wu, Wei & Li, Peng & Fu, Xiaopeng & Yan, Jinyue & Wang, Chengshan, 2022. "Flexible Shifted-Frequency analysis for Multi-Timescale simulations of active distribution networks," Applied Energy, Elsevier, vol. 321(C).
    3. Julio Martinez-Bolaños & Vinícius Silva & Mariana Zucchi & Raphael Heideier & Stefania Relva & Marco Saidel & Eliane Fadigas, 2020. "Performance Analysis of Topologies for Autonomous Hybrid Microgrids in Remote Non-Interconnected Communities in the Amazon Region," Sustainability, MDPI, vol. 13(1), pages 1-15, December.
    4. Armghan, Hammad & Xu, Yinliang & Sun, Hongbin & Ali, Naghmash & Liu, Jiajin, 2024. "Event-triggered multi-time scale control and low carbon operation for electric-hydrogen DC microgrid," Applied Energy, Elsevier, vol. 355(C).
    5. Jihed Hmad & Azeddine Houari & Allal El Moubarek Bouzid & Abdelhakim Saim & Hafedh Trabelsi, 2023. "A Review on Mode Transition Strategies between Grid-Connected and Standalone Operation of Voltage Source Inverters-Based Microgrids," Energies, MDPI, vol. 16(13), pages 1-41, June.
    6. Tostado-Véliz, Marcos & Kamel, Salah & Hasanien, Hany M. & Turky, Rania A. & Jurado, Francisco, 2022. "Uncertainty-aware day-ahead scheduling of microgrids considering response fatigue: An IGDT approach," Applied Energy, Elsevier, vol. 310(C).
    7. Feng Wang & Lizheng Sun & Zhang Wen & Fang Zhuo, 2022. "Overview of Inertia Enhancement Methods in DC System," Energies, MDPI, vol. 15(18), pages 1-25, September.
    8. dos Santos Neto, Pedro J. & Barros, Tárcio A.S. & Silveira, Joao P.C. & Ruppert Filho, Ernesto & Vasquez, Juan C. & Guerrero, Josep M., 2020. "Power management techniques for grid-connected DC microgrids: A comparative evaluation," Applied Energy, Elsevier, vol. 269(C).
    9. Yu, Hang & Niu, Songyan & Shang, Yitong & Shao, Ziyun & Jia, Youwei & Jian, Linni, 2022. "Electric vehicles integration and vehicle-to-grid operation in active distribution grids: A comprehensive review on power architectures, grid connection standards and typical applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    10. Wang, Shuoqi & Lu, Languang & Han, Xuebing & Ouyang, Minggao & Feng, Xuning, 2020. "Virtual-battery based droop control and energy storage system size optimization of a DC microgrid for electric vehicle fast charging station," Applied Energy, Elsevier, vol. 259(C).
    11. Yu, Hang & Niu, Songyan & Zhang, Yumeng & Jian, Linni, 2020. "An integrated and reconfigurable hybrid AC/DC microgrid architecture with autonomous power flow control for nearly/net zero energy buildings," Applied Energy, Elsevier, vol. 263(C).
    12. Fawad Azeem & Ashfaq Ahmad & Taimoor Muzaffar Gondal & Jehangir Arshad & Ateeq Ur Rehman & Elsayed M. Tag Eldin & Muhammad Shafiq & Habib Hamam, 2022. "Load Management and Optimal Sizing of Special-Purpose Microgrids Using Two Stage PSO-Fuzzy Based Hybrid Approach," Energies, MDPI, vol. 15(17), pages 1-19, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gui, Yonghao & Wei, Baoze & Li, Mingshen & Guerrero, Josep M. & Vasquez, Juan C., 2018. "Passivity-based coordinated control for islanded AC microgrid," Applied Energy, Elsevier, vol. 229(C), pages 551-561.
    2. Guido Cavraro & Tommaso Caldognetto & Ruggero Carli & Paolo Tenti, 2019. "A Master/Slave Approach to Power Flow and Overvoltage Control in Low-Voltage Microgrids," Energies, MDPI, vol. 12(14), pages 1-22, July.
    3. Brandao, Danilo I. & de Araújo, Lucas S. & Caldognetto, Tommaso & Pomilio, José A., 2018. "Coordinated control of three- and single-phase inverters coexisting in low-voltage microgrids," Applied Energy, Elsevier, vol. 228(C), pages 2050-2060.
    4. Saheed Lekan Gbadamosi & Nnamdi I. Nwulu, 2020. "Optimal Power Dispatch and Reliability Analysis of Hybrid CHP-PV-Wind Systems in Farming Applications," Sustainability, MDPI, vol. 12(19), pages 1-16, October.
    5. Kou, Peng & Liang, Deliang & Gao, Lin, 2017. "Distributed EMPC of multiple microgrids for coordinated stochastic energy management," Applied Energy, Elsevier, vol. 185(P1), pages 939-952.
    6. dos Santos Neto, Pedro J. & Barros, Tárcio A.S. & Silveira, Joao P.C. & Ruppert Filho, Ernesto & Vasquez, Juan C. & Guerrero, Josep M., 2020. "Power management techniques for grid-connected DC microgrids: A comparative evaluation," Applied Energy, Elsevier, vol. 269(C).
    7. Xianyong Zhang & Yaohong Huang & Li Li & Wei-Chang Yeh, 2018. "Power and Capacity Consensus Tracking of Distributed Battery Storage Systems in Modular Microgrids," Energies, MDPI, vol. 11(6), pages 1-25, June.
    8. Zehir, Mustafa Alparslan & Batman, Alp & Sonmez, Mehmet Ali & Font, Aytug & Tsiamitros, Dimitrios & Stimoniaris, Dimitris & Kollatou, Theofano & Bagriyanik, Mustafa & Ozdemir, Aydogan & Dialynas, Evan, 2017. "Impacts of microgrids with renewables on secondary distribution networks," Applied Energy, Elsevier, vol. 201(C), pages 308-319.
    9. Yang, Chao & Yao, Wei & Fang, Jiakun & Ai, Xiaomeng & Chen, Zhe & Wen, Jinyu & He, Haibo, 2019. "Dynamic event-triggered robust secondary frequency control for islanded AC microgrid," Applied Energy, Elsevier, vol. 242(C), pages 821-836.
    10. Sun, Xu & Liu, Yanli & Deng, Liangchen, 2020. "Reliability assessment of cyber-physical distribution network based on the fault tree," Renewable Energy, Elsevier, vol. 155(C), pages 1411-1424.
    11. Bakhtiari, Hamed & Zhong, Jin & Alvarez, Manuel, 2021. "Predicting the stochastic behavior of uncertainty sources in planning a stand-alone renewable energy-based microgrid using Metropolis–coupled Markov chain Monte Carlo simulation," Applied Energy, Elsevier, vol. 290(C).
    12. Yuan, Minghan & Fu, Yang & Mi, Yang & Li, Zhenkun & Wang, Chengshan, 2019. "Hierarchical control of DC microgrid with dynamical load power sharing," Applied Energy, Elsevier, vol. 239(C), pages 1-11.
    13. Bakhtiari, Hamed & Zhong, Jin & Alvarez, Manuel, 2022. "Uncertainty modeling methods for risk-averse planning and operation of stand-alone renewable energy-based microgrids," Renewable Energy, Elsevier, vol. 199(C), pages 866-880.
    14. Guido C. Guerrero-Liquet & Santiago Oviedo-Casado & J. M. Sánchez-Lozano & M. Socorro García-Cascales & Javier Prior & Antonio Urbina, 2018. "Determination of the Optimal Size of Photovoltaic Systems by Using Multi-Criteria Decision-Making Methods," Sustainability, MDPI, vol. 10(12), pages 1-18, December.
    15. Nikita V. Martyushev & Boris V. Malozyomov & Olga A. Filina & Svetlana N. Sorokova & Egor A. Efremenkov & Denis V. Valuev & Mengxu Qi, 2023. "Stochastic Models and Processing Probabilistic Data for Solving the Problem of Improving the Electric Freight Transport Reliability," Mathematics, MDPI, vol. 11(23), pages 1-19, November.
    16. Jiang, Sufan & Gao, Shan & Pan, Guangsheng & Zhao, Xin & Liu, Yu & Guo, Yasen & Wang, Sicheng, 2020. "A novel robust security constrained unit commitment model considering HVDC regulation," Applied Energy, Elsevier, vol. 278(C).
    17. Haifeng Liang & Yue Dong & Yuxi Huang & Can Zheng & Peng Li, 2018. "Modeling of Multiple Master–Slave Control under Island Microgrid and Stability Analysis Based on Control Parameter Configuration," Energies, MDPI, vol. 11(9), pages 1-18, August.
    18. Hao, Ran & Lu, Tianguang & Ai, Qian & Wang, Zhe & Wang, Xiaolong, 2020. "Distributed online learning and dynamic robust standby dispatch for networked microgrids," Applied Energy, Elsevier, vol. 274(C).
    19. Aouss Gabash & Pu Li, 2016. "On Variable Reverse Power Flow-Part II: An Electricity Market Model Considering Wind Station Size and Location," Energies, MDPI, vol. 9(4), pages 1-13, March.
    20. Haris, Muhammad & Hasan, Muhammad Noman & Qin, Shiyin, 2021. "Early and robust remaining useful life prediction of supercapacitors using BOHB optimized Deep Belief Network," Applied Energy, Elsevier, vol. 286(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:252:y:2019:i:c:22. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.