IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v242y2019icp821-836.html
   My bibliography  Save this article

Dynamic event-triggered robust secondary frequency control for islanded AC microgrid

Author

Listed:
  • Yang, Chao
  • Yao, Wei
  • Fang, Jiakun
  • Ai, Xiaomeng
  • Chen, Zhe
  • Wen, Jinyu
  • He, Haibo

Abstract

The permeability of renewable energy sources rapidly increases in the microgrid for economic and environmental concerns. However, the uncertainty of renewable energy may lead to frequency fluctuation or even instability in the microgrid. This paper proposes a dynamic event-triggered robust secondary frequency control scheme for the islanded microgrid to handle the uncertainty of the renewable energy source. In addition to the enhancement of frequency stability, the communication burden is also considered in this work. The proposed dynamic event-triggered communication scheme provides a good balance between dynamic performance and communication burden. Based on the discontinuous Lyapunov function, the stability analysis helps the optimal gain selecting. Given the designed controller, the derived theorems in this paper can help to examine whether the communication system fulfills the requirements from the controllers. To validate the proposed method, case studies are carried out based on two typical microgrids. The simulation results are compared with conventional frequency controllers. It shows that the proposed controller outperforms other types of controllers in term of the frequency response performance and communication burden.

Suggested Citation

  • Yang, Chao & Yao, Wei & Fang, Jiakun & Ai, Xiaomeng & Chen, Zhe & Wen, Jinyu & He, Haibo, 2019. "Dynamic event-triggered robust secondary frequency control for islanded AC microgrid," Applied Energy, Elsevier, vol. 242(C), pages 821-836.
  • Handle: RePEc:eee:appene:v:242:y:2019:i:c:p:821-836
    DOI: 10.1016/j.apenergy.2019.03.139
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261919305471
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2019.03.139?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Teng, Fei & Mu, Yunfei & Jia, Hongjie & Wu, Jianzhong & Zeng, Pingliang & Strbac, Goran, 2017. "Challenges on primary frequency control and potential solution from EVs in the future GB electricity system," Applied Energy, Elsevier, vol. 194(C), pages 353-362.
    2. Rodrigues, E.M.G. & Osório, G.J. & Godina, R. & Bizuayehu, A.W. & Lujano-Rojas, J.M. & Catalão, J.P.S., 2016. "Grid code reinforcements for deeper renewable generation in insular energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 163-177.
    3. Serban, Ioan, 2018. "A control strategy for microgrids: Seamless transfer based on a leading inverter with supercapacitor energy storage system," Applied Energy, Elsevier, vol. 221(C), pages 490-507.
    4. Chen, Jian & Yao, Wei & Zhang, Chuan-Ke & Ren, Yaxing & Jiang, Lin, 2019. "Design of robust MPPT controller for grid-connected PMSG-Based wind turbine via perturbation observation based nonlinear adaptive control," Renewable Energy, Elsevier, vol. 134(C), pages 478-495.
    5. Ding, Tao & Lin, Yanling & Bie, Zhaohong & Chen, Chen, 2017. "A resilient microgrid formation strategy for load restoration considering master-slave distributed generators and topology reconfiguration," Applied Energy, Elsevier, vol. 199(C), pages 205-216.
    6. Rajesh, K.S. & Dash, S.S. & Rajagopal, Ragam & Sridhar, R., 2017. "A review on control of ac microgrid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 814-819.
    7. Ren, Lingyu & Qin, Yanyuan & Li, Yan & Zhang, Peng & Wang, Bing & Luh, Peter B. & Han, Song & Orekan, Taofeek & Gong, Tao, 2018. "Enabling resilient distributed power sharing in networked microgrids through software defined networking," Applied Energy, Elsevier, vol. 210(C), pages 1251-1265.
    8. Manditereza, Patrick Tendayi & Bansal, Ramesh, 2016. "Renewable distributed generation: The hidden challenges – A review from the protection perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1457-1465.
    9. Adefarati, T. & Bansal, R.C., 2017. "Reliability and economic assessment of a microgrid power system with the integration of renewable energy resources," Applied Energy, Elsevier, vol. 206(C), pages 911-933.
    10. Dehghanpour, Kaveh & Afsharnia, Saeed, 2015. "Electrical demand side contribution to frequency control in power systems: a review on technical aspects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1267-1276.
    11. Hirase, Yuko & Abe, Kensho & Sugimoto, Kazushige & Sakimoto, Kenichi & Bevrani, Hassan & Ise, Toshifumi, 2018. "A novel control approach for virtual synchronous generators to suppress frequency and voltage fluctuations in microgrids," Applied Energy, Elsevier, vol. 210(C), pages 699-710.
    12. Riverso, Stefano & Tucci, Michele & Vasquez, Juan C. & Guerrero, Josep M. & Ferrari-Trecate, Giancarlo, 2018. "Stabilizing plug-and-play regulators and secondary coordinated control for AC islanded microgrids with bus-connected topology," Applied Energy, Elsevier, vol. 210(C), pages 914-924.
    13. Liao, Shiwu & Yao, Wei & Han, Xingning & Wen, Jinyu & Cheng, Shijie, 2017. "Chronological operation simulation framework for regional power system under high penetration of renewable energy using meteorological data," Applied Energy, Elsevier, vol. 203(C), pages 816-828.
    14. Razeghi, Ghazal & Gu, Fei & Neal, Russell & Samuelsen, Scott, 2018. "A generic microgrid controller: Concept, testing, and insights," Applied Energy, Elsevier, vol. 229(C), pages 660-671.
    15. Zia, Muhammad Fahad & Elbouchikhi, Elhoussin & Benbouzid, Mohamed, 2018. "Microgrids energy management systems: A critical review on methods, solutions, and prospects," Applied Energy, Elsevier, vol. 222(C), pages 1033-1055.
    16. Di Giorgio, Alessandro & Pimpinella, Laura, 2012. "An event driven Smart Home Controller enabling consumer economic saving and automated Demand Side Management," Applied Energy, Elsevier, vol. 96(C), pages 92-103.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rao, Yingqing & Yang, Jun & Xiao, Jinxing & Xu, Bingyan & Liu, Wenjing & Li, Yonghui, 2021. "A frequency control strategy for multimicrogrids with V2G based on the improved robust model predictive control," Energy, Elsevier, vol. 222(C).
    2. Wang, Xiaobo & Huang, Wentao & Li, Ran & Tai, Nengling & Zong, Ming, 2023. "Frequency-based demand side response considering the discontinuity of the ToU tariff," Applied Energy, Elsevier, vol. 348(C).
    3. Boyang Huang & Yong Xiao & Xin Jin & Junhao Feng & Xin Li & Li Ding, 2022. "A Novel Dynamic Event-Triggered Mechanism for Distributed Secondary Control in Islanded AC Microgrids," Energies, MDPI, vol. 15(19), pages 1-12, September.
    4. Miao Zhang & Keyu Zhuang & Tong Zhao & Xianli Chen & Jingze Xue & Zheng Qiao & Shuai Cui & Yunlong Gao, 2022. "Bus Voltage Control of Photovoltaic Grid Connected Inverter Based on Adaptive Linear Active Disturbance Rejection," Energies, MDPI, vol. 15(15), pages 1-20, July.
    5. Shangguan, Xing-Chen & He, Yong & Zhang, Chuan-Ke & Jiang, Lin & Wu, Min, 2022. "Load frequency control of time-delayed power system based on event-triggered communication scheme," Applied Energy, Elsevier, vol. 308(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hirase, Yuko & Abe, Kensho & Sugimoto, Kazushige & Sakimoto, Kenichi & Bevrani, Hassan & Ise, Toshifumi, 2018. "A novel control approach for virtual synchronous generators to suppress frequency and voltage fluctuations in microgrids," Applied Energy, Elsevier, vol. 210(C), pages 699-710.
    2. Hirase, Y. & Noro, O. & Nakagawa, H. & Yoshimura, E. & Katsura, S. & Abe, K. & Sugimoto, K. & Sakimoto, K., 2018. "Decentralised and interlink-less power interchange among residences in microgrids using virtual synchronous generator control," Applied Energy, Elsevier, vol. 228(C), pages 2437-2447.
    3. Yang, Bo & Wang, Jingbo & Sang, Yiyan & Yu, Lei & Shu, Hongchun & Li, Shengnan & He, Tingyi & Yang, Lei & Zhang, Xiaoshun & Yu, Tao, 2019. "Applications of supercapacitor energy storage systems in microgrid with distributed generators via passive fractional-order sliding-mode control," Energy, Elsevier, vol. 187(C).
    4. dos Santos Neto, Pedro J. & Barros, Tárcio A.S. & Silveira, Joao P.C. & Ruppert Filho, Ernesto & Vasquez, Juan C. & Guerrero, Josep M., 2020. "Power management techniques for grid-connected DC microgrids: A comparative evaluation," Applied Energy, Elsevier, vol. 269(C).
    5. Liao, Shiwu & Yao, Wei & Han, Xingning & Fang, Jiakun & Ai, Xiaomeng & Wen, Jinyu & He, Haibo, 2019. "An improved two-stage optimization for network and load recovery during power system restoration," Applied Energy, Elsevier, vol. 249(C), pages 265-275.
    6. Hussain, Akhtar & Bui, Van-Hai & Kim, Hak-Man, 2019. "Microgrids as a resilience resource and strategies used by microgrids for enhancing resilience," Applied Energy, Elsevier, vol. 240(C), pages 56-72.
    7. Gui, Yonghao & Wei, Baoze & Li, Mingshen & Guerrero, Josep M. & Vasquez, Juan C., 2018. "Passivity-based coordinated control for islanded AC microgrid," Applied Energy, Elsevier, vol. 229(C), pages 551-561.
    8. Wang, Yi & Qiu, Dawei & Sun, Mingyang & Strbac, Goran & Gao, Zhiwei, 2023. "Secure energy management of multi-energy microgrid: A physical-informed safe reinforcement learning approach," Applied Energy, Elsevier, vol. 335(C).
    9. Dreidy, Mohammad & Mokhlis, H. & Mekhilef, Saad, 2017. "Inertia response and frequency control techniques for renewable energy sources: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 144-155.
    10. Wang, Qin & Yao, Wei & Fang, Jiakun & Ai, Xiaomeng & Wen, Jinyu & Yang, Xiaobo & Xie, Hailian & Huang, Xing, 2020. "Dynamic modeling and small signal stability analysis of distributed photovoltaic grid-connected system with large scale of panel level DC optimizers," Applied Energy, Elsevier, vol. 259(C).
    11. Serban, Ioan, 2018. "A control strategy for microgrids: Seamless transfer based on a leading inverter with supercapacitor energy storage system," Applied Energy, Elsevier, vol. 221(C), pages 490-507.
    12. Guido Cavraro & Tommaso Caldognetto & Ruggero Carli & Paolo Tenti, 2019. "A Master/Slave Approach to Power Flow and Overvoltage Control in Low-Voltage Microgrids," Energies, MDPI, vol. 12(14), pages 1-22, July.
    13. Zhang, Bingying & Li, Qiqiang & Wang, Luhao & Feng, Wei, 2018. "Robust optimization for energy transactions in multi-microgrids under uncertainty," Applied Energy, Elsevier, vol. 217(C), pages 346-360.
    14. Malik, Anam & Ravishankar, Jayashri, 2018. "A hybrid control approach for regulating frequency through demand response," Applied Energy, Elsevier, vol. 210(C), pages 1347-1362.
    15. Alessandro Burgio & Daniele Menniti & Nicola Sorrentino & Anna Pinnarelli & Zbigniew Leonowicz, 2020. "Influence and Impact of Data Averaging and Temporal Resolution on the Assessment of Energetic, Economic and Technical Issues of Hybrid Photovoltaic-Battery Systems," Energies, MDPI, vol. 13(2), pages 1-26, January.
    16. Lee, J. & Razeghi, G. & Samuelsen, S., 2022. "Generic microgrid controller with self-healing capabilities," Applied Energy, Elsevier, vol. 308(C).
    17. Mi, Yang & Chen, Xin & Ji, Hongpeng & Ji, Liang & Fu, Yang & Wang, Chengshan & Wang, Jianhui, 2019. "The coordinated control strategy for isolated DC microgrid based on adaptive storage adjustment without communication," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    18. Ashabani, Mahdi & Gooi, Hoay Beng & Guerrero, Josep M., 2018. "Designing high-order power-source synchronous current converters for islanded and grid-connected microgrids," Applied Energy, Elsevier, vol. 219(C), pages 370-384.
    19. Brandao, Danilo I. & de Araújo, Lucas S. & Caldognetto, Tommaso & Pomilio, José A., 2018. "Coordinated control of three- and single-phase inverters coexisting in low-voltage microgrids," Applied Energy, Elsevier, vol. 228(C), pages 2050-2060.
    20. Zhou, Bo & Ai, Xiaomeng & Fang, Jiakun & Yao, Wei & Zuo, Wenping & Chen, Zhe & Wen, Jinyu, 2019. "Data-adaptive robust unit commitment in the hybrid AC/DC power system," Applied Energy, Elsevier, vol. 254(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:242:y:2019:i:c:p:821-836. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.