IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v163y2016icp408-422.html
   My bibliography  Save this article

Interactive energy management of networked microgrids-based active distribution system considering large-scale integration of renewable energy resources

Author

Listed:
  • Lv, Tianguang
  • Ai, Qian

Abstract

Recently, large-scale renewable energy resources have been widely integrated into power systems. To optimize large-scale integration of these resources and improve the operation performance of the distribution system, this paper proposes a novel dynamic energy management strategy with the cooperative interaction of an energy system: a multi-grid connected microgrids (MGs)-based active distribution system (ADS). A bi-level multi-objective optimization problem of the strategy is formulated with the active distribution network (ADN) in the upper level and MGs in the lower level. The interaction can be classified into two categories: the one between MGs and the ADN and the other one among MGs. The former is described by bi-level programming; the latter is innovatively explained by an interactive energy game matrix (IEGM) defined in this paper. The concept of the expanded energy storage system is defined and applied to the IEGM for the optimal operation of ADSs. The optimal operation includes improved technical performances in terms of power quality, energy utilization, adaptability and autonomy. The optimization problem is solved with a hybrid algorithm of Rough Set Theory–Hierarchical Genetic Algorithm–NSGA-II. Case studies of an ADS with different MGs and a real system would validate the efficiency of the proposed methodology. Results show that the proposed EM strategy can accurately quantify and guide the energy interaction among MGs and that between MGs and the ADN. Moreover, those technical performances of the ADS are improved.

Suggested Citation

  • Lv, Tianguang & Ai, Qian, 2016. "Interactive energy management of networked microgrids-based active distribution system considering large-scale integration of renewable energy resources," Applied Energy, Elsevier, vol. 163(C), pages 408-422.
  • Handle: RePEc:eee:appene:v:163:y:2016:i:c:p:408-422
    DOI: 10.1016/j.apenergy.2015.10.179
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261915014294
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2015.10.179?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Niknam, Taher & Azizipanah-Abarghooee, Rasoul & Narimani, Mohammad Rasoul, 2012. "An efficient scenario-based stochastic programming framework for multi-objective optimal micro-grid operation," Applied Energy, Elsevier, vol. 99(C), pages 455-470.
    2. Patteeuw, Dieter & Bruninx, Kenneth & Arteconi, Alessia & Delarue, Erik & D’haeseleer, William & Helsen, Lieve, 2015. "Integrated modeling of active demand response with electric heating systems coupled to thermal energy storage systems," Applied Energy, Elsevier, vol. 151(C), pages 306-319.
    3. Fares, Robert L. & Webber, Michael E., 2014. "A flexible model for economic operational management of grid battery energy storage," Energy, Elsevier, vol. 78(C), pages 768-776.
    4. Fathima, A. Hina & Palanisamy, K., 2015. "Optimization in microgrids with hybrid energy systems – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 431-446.
    5. Sioshansi, Ramteen & Denholm, Paul & Jenkin, Thomas & Weiss, Jurgen, 2009. "Estimating the value of electricity storage in PJM: Arbitrage and some welfare effects," Energy Economics, Elsevier, vol. 31(2), pages 269-277, March.
    6. Bhatt, Jignesh & Shah, Vipul & Jani, Omkar, 2014. "An instrumentation engineer’s review on smart grid: Critical applications and parameters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 1217-1239.
    7. Montuori, Lina & Alcázar-Ortega, Manuel & Álvarez-Bel, Carlos & Domijan, Alex, 2014. "Integration of renewable energy in microgrids coordinated with demand response resources: Economic evaluation of a biomass gasification plant by Homer Simulator," Applied Energy, Elsevier, vol. 132(C), pages 15-22.
    8. Korkas, Christos D. & Baldi, Simone & Michailidis, Iakovos & Kosmatopoulos, Elias B., 2015. "Intelligent energy and thermal comfort management in grid-connected microgrids with heterogeneous occupancy schedule," Applied Energy, Elsevier, vol. 149(C), pages 194-203.
    9. Savić, Aleksandar & Đurišić, Željko, 2014. "Optimal sizing and location of SVC devices for improvement of voltage profile in distribution network with dispersed photovoltaic and wind power plants," Applied Energy, Elsevier, vol. 134(C), pages 114-124.
    10. Sheikhi, Aras & Bahrami, Shahab & Ranjbar, Ali Mohammad, 2015. "An autonomous demand response program for electricity and natural gas networks in smart energy hubs," Energy, Elsevier, vol. 89(C), pages 490-499.
    11. Warren, Peter, 2014. "A review of demand-side management policy in the UK," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 941-951.
    12. Zhao, Bo & Xue, Meidong & Zhang, Xuesong & Wang, Caisheng & Zhao, Junhui, 2015. "An MAS based energy management system for a stand-alone microgrid at high altitude," Applied Energy, Elsevier, vol. 143(C), pages 251-261.
    13. Oh, Se-Young & Binns, Michael & Yeo, Yeong-Koo & Kim, Jin-Kuk, 2014. "Improving energy efficiency for local energy systems," Applied Energy, Elsevier, vol. 131(C), pages 26-39.
    14. Mehleri, Eugenia D. & Sarimveis, Haralambos & Markatos, Nikolaos C. & Papageorgiou, Lazaros G., 2012. "A mathematical programming approach for optimal design of distributed energy systems at the neighbourhood level," Energy, Elsevier, vol. 44(1), pages 96-104.
    15. Kyriakarakos, George & Piromalis, Dimitrios D. & Dounis, Anastasios I. & Arvanitis, Konstantinos G. & Papadakis, George, 2013. "Intelligent demand side energy management system for autonomous polygeneration microgrids," Applied Energy, Elsevier, vol. 103(C), pages 39-51.
    16. Zhou, Kaile & Yang, Shanlin & Chen, Zhiqiang & Ding, Shuai, 2014. "Optimal load distribution model of microgrid in the smart grid environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 304-310.
    17. Apergis, Nicholas & Payne, James E., 2011. "Renewable and non-renewable electricity consumption–growth nexus: Evidence from emerging market economies," Applied Energy, Elsevier, vol. 88(12), pages 5226-5230.
    18. Su, Wencong & Huang, Alex Q., 2014. "A game theoretic framework for a next-generation retail electricity market with high penetration of distributed residential electricity suppliers," Applied Energy, Elsevier, vol. 119(C), pages 341-350.
    19. Hedegaard, Karsten & Mathiesen, Brian Vad & Lund, Henrik & Heiselberg, Per, 2012. "Wind power integration using individual heat pumps – Analysis of different heat storage options," Energy, Elsevier, vol. 47(1), pages 284-293.
    20. Khodr, H.M. & El Halabi, N. & García-Gracia, M., 2012. "Intelligent renewable microgrid scheduling controlled by a virtual power producer: A laboratory experience," Renewable Energy, Elsevier, vol. 48(C), pages 269-275.
    21. Zhang, Ni & Yan, Yu & Su, Wencong, 2015. "A game-theoretic economic operation of residential distribution system with high participation of distributed electricity prosumers," Applied Energy, Elsevier, vol. 154(C), pages 471-479.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fontenot, Hannah & Dong, Bing, 2019. "Modeling and control of building-integrated microgrids for optimal energy management – A review," Applied Energy, Elsevier, vol. 254(C).
    2. Ahmad Khan, Aftab & Naeem, Muhammad & Iqbal, Muhammad & Qaisar, Saad & Anpalagan, Alagan, 2016. "A compendium of optimization objectives, constraints, tools and algorithms for energy management in microgrids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1664-1683.
    3. Zhang, Jingrui & Wu, Yihong & Guo, Yiran & Wang, Bo & Wang, Hengyue & Liu, Houde, 2016. "A hybrid harmony search algorithm with differential evolution for day-ahead scheduling problem of a microgrid with consideration of power flow constraints," Applied Energy, Elsevier, vol. 183(C), pages 791-804.
    4. Arcos-Aviles, Diego & Pascual, Julio & Guinjoan, Francesc & Marroyo, Luis & Sanchis, Pablo & Marietta, Martin P., 2017. "Low complexity energy management strategy for grid profile smoothing of a residential grid-connected microgrid using generation and demand forecasting," Applied Energy, Elsevier, vol. 205(C), pages 69-84.
    5. Chen, Yizhong & He, Li & Li, Jing & Cheng, Xi & Lu, Hongwei, 2016. "An inexact bi-level simulation–optimization model for conjunctive regional renewable energy planning and air pollution control for electric power generation systems," Applied Energy, Elsevier, vol. 183(C), pages 969-983.
    6. Wu, Qiong & Ren, Hongbo & Gao, Weijun & Ren, Jianxing & Lao, Changshi, 2017. "Profit allocation analysis among the distributed energy network participants based on Game-theory," Energy, Elsevier, vol. 118(C), pages 783-794.
    7. Khan, Agha Salman M. & Verzijlbergh, Remco A. & Sakinci, Ozgur Can & De Vries, Laurens J., 2018. "How do demand response and electrical energy storage affect (the need for) a capacity market?," Applied Energy, Elsevier, vol. 214(C), pages 39-62.
    8. Baeten, Brecht & Rogiers, Frederik & Helsen, Lieve, 2017. "Reduction of heat pump induced peak electricity use and required generation capacity through thermal energy storage and demand response," Applied Energy, Elsevier, vol. 195(C), pages 184-195.
    9. Zakeri, Behnam & Syri, Sanna, 2015. "Electrical energy storage systems: A comparative life cycle cost analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 569-596.
    10. Yiqi Dong & Zuoji Dong, 2023. "Bibliometric Analysis of Game Theory on Energy and Natural Resource," Sustainability, MDPI, vol. 15(2), pages 1-19, January.
    11. Bustos, Cristian & Watts, David, 2017. "Novel methodology for microgrids in isolated communities: Electricity cost-coverage trade-off with 3-stage technology mix, dispatch & configuration optimizations," Applied Energy, Elsevier, vol. 195(C), pages 204-221.
    12. Tang, Yanyan & Zhang, Qi & Li, Yaoming & Li, Hailong & Pan, Xunzhang & Mclellan, Benjamin, 2019. "The social-economic-environmental impacts of recycling retired EV batteries under reward-penalty mechanism," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    13. Bhatti, Bilal Ahmad & Broadwater, Robert, 2019. "Energy trading in the distribution system using a non-model based game theoretic approach," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    14. Weitzel, Timm & Glock, Christoph H., 2018. "Energy management for stationary electric energy storage systems: A systematic literature review," European Journal of Operational Research, Elsevier, vol. 264(2), pages 582-606.
    15. Hossein Shayeghi & Elnaz Shahryari & Mohammad Moradzadeh & Pierluigi Siano, 2019. "A Survey on Microgrid Energy Management Considering Flexible Energy Sources," Energies, MDPI, vol. 12(11), pages 1-26, June.
    16. Akhil Joseph & Patil Balachandra, 2020. "Energy Internet, the Future Electricity System: Overview, Concept, Model Structure, and Mechanism," Energies, MDPI, vol. 13(16), pages 1-26, August.
    17. Javidsharifi, Mahshid & Niknam, Taher & Aghaei, Jamshid & Mokryani, Geev, 2018. "Multi-objective short-term scheduling of a renewable-based microgrid in the presence of tidal resources and storage devices," Applied Energy, Elsevier, vol. 216(C), pages 367-381.
    18. Lo Piano, S. & Smith, S.T., 2022. "Energy demand and its temporal flexibility: Approaches, criticalities and ways forward," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    19. Arteconi, Alessia & Patteeuw, Dieter & Bruninx, Kenneth & Delarue, Erik & D’haeseleer, William & Helsen, Lieve, 2016. "Active demand response with electric heating systems: Impact of market penetration," Applied Energy, Elsevier, vol. 177(C), pages 636-648.
    20. O’Dwyer, Edward & Pan, Indranil & Acha, Salvador & Shah, Nilay, 2019. "Smart energy systems for sustainable smart cities: Current developments, trends and future directions," Applied Energy, Elsevier, vol. 237(C), pages 581-597.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:163:y:2016:i:c:p:408-422. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.