IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v290y2021ics0306261921002373.html
   My bibliography  Save this article

Predicting the stochastic behavior of uncertainty sources in planning a stand-alone renewable energy-based microgrid using Metropolis–coupled Markov chain Monte Carlo simulation

Author

Listed:
  • Bakhtiari, Hamed
  • Zhong, Jin
  • Alvarez, Manuel

Abstract

Due to the lack of available flexibility sources to cope with different uncertainties in the real-time operation of stand-alone renewable energy-based microgrids, the stochastic behavior of uncertainty sources needs to be included in the planning stage. Since there is a high association between some of the uncertainty sources, defining a proper time series to represent the behavior of each source of uncertainty is a challenging issue. Consequently, uncertainty sources should be modeled in such a way that the designed microgrid be able to cope with all scenarios from probability and impact viewpoints. This paper proposes a modified Metropolis–coupled Markov chain Monte Carlo (MC)3 simulation to predict the stochastic behavior of different uncertainty sources in the planning of a stand-alone renewable energy-based microgrid. Solar radiation, wind speed, the water flow of a river, load consumption, and electricity price have been considered as primary sources of uncertainty. A novel data classification method is introduced within the (MC)3 simulation to model the time-dependency and the association between different uncertainty sources. Moreover, a novel curve-fitting approach is proposed to improve the accuracy of representing the multimodal distribution functions, modeling the Markov chain states, and the long-term probability of uncertainty sources. The predicted representative time series with the proposed modified (MC)3 model is benchmarked against the retrospective model, the long-term historical data, and the simple Monte Carlo simulation model to capture the stochastic behavior of uncertainty sources. The results show that the proposed model represents the probability distribution function of each source of uncertainty, the continuity of samples, time dependency, the association between different uncertainty sources, short-term and long-term trends, and the seasonality of uncertainty sources. Finally, results confirm that the proposed modified (MC)3 can appropriately predict all scenarios with high probability and impact.

Suggested Citation

  • Bakhtiari, Hamed & Zhong, Jin & Alvarez, Manuel, 2021. "Predicting the stochastic behavior of uncertainty sources in planning a stand-alone renewable energy-based microgrid using Metropolis–coupled Markov chain Monte Carlo simulation," Applied Energy, Elsevier, vol. 290(C).
  • Handle: RePEc:eee:appene:v:290:y:2021:i:c:s0306261921002373
    DOI: 10.1016/j.apenergy.2021.116719
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261921002373
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2021.116719?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hilbers, Adriaan P. & Brayshaw, David J. & Gandy, Axel, 2019. "Importance subsampling: improving power system planning under climate-based uncertainty," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    2. Adefarati, T. & Bansal, R.C., 2017. "Reliability assessment of distribution system with the integration of renewable distributed generation," Applied Energy, Elsevier, vol. 185(P1), pages 158-171.
    3. Ehsan, Ali & Yang, Qiang, 2019. "Scenario-based investment planning of isolated multi-energy microgrids considering electricity, heating and cooling demand," Applied Energy, Elsevier, vol. 235(C), pages 1277-1288.
    4. Jiao, P.H. & Chen, J.J. & Peng, K. & Zhao, Y.L. & Xin, K.F., 2020. "Multi-objective mean-semi-entropy model for optimal standalone micro-grid planning with uncertain renewable energy resources," Energy, Elsevier, vol. 191(C).
    5. Lotfi, Hossein & Khodaei, Amin, 2017. "Hybrid AC/DC microgrid planning," Energy, Elsevier, vol. 118(C), pages 37-46.
    6. Nikmehr, Nima & Najafi-Ravadanegh, Sajad & Khodaei, Amin, 2017. "Probabilistic optimal scheduling of networked microgrids considering time-based demand response programs under uncertainty," Applied Energy, Elsevier, vol. 198(C), pages 267-279.
    7. Hemmati, Reza & Saboori, Hedayat & Siano, Pierluigi, 2017. "Coordinated short-term scheduling and long-term expansion planning in microgrids incorporating renewable energy resources and energy storage systems," Energy, Elsevier, vol. 134(C), pages 699-708.
    8. Pereira, Sérgio & Ferreira, Paula & Vaz, A.I.F., 2017. "Generation expansion planning with high share of renewables of variable output," Applied Energy, Elsevier, vol. 190(C), pages 1275-1288.
    9. Sanajaoba Singh, Sarangthem & Fernandez, Eugene, 2018. "Modeling, size optimization and sensitivity analysis of a remote hybrid renewable energy system," Energy, Elsevier, vol. 143(C), pages 719-731.
    10. al Irsyad, Muhammad Indra & Halog, Anthony & Nepal, Rabindra, 2019. "Renewable energy projections for climate change mitigation: An analysis of uncertainty and errors," Renewable Energy, Elsevier, vol. 130(C), pages 536-546.
    11. Adefarati, T. & Bansal, R.C., 2019. "Reliability, economic and environmental analysis of a microgrid system in the presence of renewable energy resources," Applied Energy, Elsevier, vol. 236(C), pages 1089-1114.
    12. Poncelet, Kris & Delarue, Erik & Six, Daan & Duerinck, Jan & D’haeseleer, William, 2016. "Impact of the level of temporal and operational detail in energy-system planning models," Applied Energy, Elsevier, vol. 162(C), pages 631-643.
    13. Zakaria, A. & Ismail, Firas B. & Lipu, M.S. Hossain & Hannan, M.A., 2020. "Uncertainty models for stochastic optimization in renewable energy applications," Renewable Energy, Elsevier, vol. 145(C), pages 1543-1571.
    14. Matti Koivisto & Kaushik Das & Feng Guo & Poul Sørensen & Edgar Nuño & Nicolaos Cutululis & Petr Maule, 2019. "Using time series simulation tools for assessing the effects of variable renewable energy generation on power and energy systems," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 8(3), May.
    15. Narayan, Apurva & Ponnambalam, Kumaraswamy, 2017. "Risk-averse stochastic programming approach for microgrid planning under uncertainty," Renewable Energy, Elsevier, vol. 101(C), pages 399-408.
    16. Pfenninger, Stefan, 2017. "Dealing with multiple decades of hourly wind and PV time series in energy models: A comparison of methods to reduce time resolution and the planning implications of inter-annual variability," Applied Energy, Elsevier, vol. 197(C), pages 1-13.
    17. Bilgili, Mehmet & Ozbek, Arif & Sahin, Besir & Kahraman, Ali, 2015. "An overview of renewable electric power capacity and progress in new technologies in the world," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 323-334.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rafał Figaj & Maciej Żołądek & Maksymilian Homa & Anna Pałac, 2022. "A Novel Hybrid Polygeneration System Based on Biomass, Wind and Solar Energy for Micro-Scale Isolated Communities," Energies, MDPI, vol. 15(17), pages 1-33, August.
    2. Sun, Weijia & Wang, Qi & Ye, Yujian & Tang, Yi, 2022. "Unified modelling of gas and thermal inertia for integrated energy system and its application to multitype reserve procurement," Applied Energy, Elsevier, vol. 305(C).
    3. Hu, Yusha & Man, Yi, 2023. "Energy consumption and carbon emissions forecasting for industrial processes: Status, challenges and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    4. Sakki, G.K. & Tsoukalas, I. & Kossieris, P. & Makropoulos, C. & Efstratiadis, A., 2022. "Stochastic simulation-optimization framework for the design and assessment of renewable energy systems under uncertainty," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    5. Lv, Chengkun & Huang, Qian & Chang, Juntao & Wang, Ziao & Zheng, Jialin & Yu, Daren, 2023. "Mode transition path optimization for turbine-based combined-cycle ramjet stage under uncertainty propagation of integrated airframe-propulsion system," Energy, Elsevier, vol. 268(C).
    6. Kuang, Zhonghong & Chen, Qi & Yu, Yang, 2022. "Assessing the CO2-emission risk due to wind-energy uncertainty," Applied Energy, Elsevier, vol. 310(C).
    7. Bakhtiari, Hamed & Zhong, Jin & Alvarez, Manuel, 2022. "Uncertainty modeling methods for risk-averse planning and operation of stand-alone renewable energy-based microgrids," Renewable Energy, Elsevier, vol. 199(C), pages 866-880.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bakhtiari, Hamed & Zhong, Jin & Alvarez, Manuel, 2022. "Uncertainty modeling methods for risk-averse planning and operation of stand-alone renewable energy-based microgrids," Renewable Energy, Elsevier, vol. 199(C), pages 866-880.
    2. Àlex Alonso-Travesset & Helena Martín & Sergio Coronas & Jordi de la Hoz, 2022. "Optimization Models under Uncertainty in Distributed Generation Systems: A Review," Energies, MDPI, vol. 15(5), pages 1-40, March.
    3. Niina Helistö & Juha Kiviluoma & Hannele Holttinen & Jose Daniel Lara & Bri‐Mathias Hodge, 2019. "Including operational aspects in the planning of power systems with large amounts of variable generation: A review of modeling approaches," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 8(5), September.
    4. Azimian, Mahdi & Amir, Vahid & Javadi, Saeid, 2020. "Economic and Environmental Policy Analysis for Emission-Neutral Multi-Carrier Microgrid Deployment," Applied Energy, Elsevier, vol. 277(C).
    5. Maximilian Hoffmann & Leander Kotzur & Detlef Stolten & Martin Robinius, 2020. "A Review on Time Series Aggregation Methods for Energy System Models," Energies, MDPI, vol. 13(3), pages 1-61, February.
    6. Ringkjøb, Hans-Kristian & Haugan, Peter M. & Seljom, Pernille & Lind, Arne & Wagner, Fabian & Mesfun, Sennai, 2020. "Short-term solar and wind variability in long-term energy system models - A European case study," Energy, Elsevier, vol. 209(C).
    7. Hilbers, Adriaan P. & Brayshaw, David J. & Gandy, Axel, 2023. "Reducing climate risk in energy system planning: A posteriori time series aggregation for models with storage," Applied Energy, Elsevier, vol. 334(C).
    8. Scott, Ian J. & Carvalho, Pedro M.S. & Botterud, Audun & Silva, Carlos A., 2019. "Clustering representative days for power systems generation expansion planning: Capturing the effects of variable renewables and energy storage," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    9. Hoffmann, Maximilian & Kotzur, Leander & Stolten, Detlef, 2022. "The Pareto-optimal temporal aggregation of energy system models," Applied Energy, Elsevier, vol. 315(C).
    10. Chang, Miguel & Thellufsen, Jakob Zink & Zakeri, Behnam & Pickering, Bryn & Pfenninger, Stefan & Lund, Henrik & Østergaard, Poul Alberg, 2021. "Trends in tools and approaches for modelling the energy transition," Applied Energy, Elsevier, vol. 290(C).
    11. Göke, Leonard & Kendziorski, Mario, 2022. "Adequacy of time-series reduction for renewable energy systems," Energy, Elsevier, vol. 238(PA).
    12. Yeganefar, Ali & Amin-Naseri, Mohammad Reza & Sheikh-El-Eslami, Mohammad Kazem, 2020. "Improvement of representative days selection in power system planning by incorporating the extreme days of the net load to take account of the variability and intermittency of renewable resources," Applied Energy, Elsevier, vol. 272(C).
    13. Vrionis, Constantinos & Tsalavoutis, Vasilios & Tolis, Athanasios, 2020. "A Generation Expansion Planning model for integrating high shares of renewable energy: A Meta-Model Assisted Evolutionary Algorithm approach," Applied Energy, Elsevier, vol. 259(C).
    14. Helistö, Niina & Kiviluoma, Juha & Morales-España, Germán & O’Dwyer, Ciara, 2021. "Impact of operational details and temporal representations on investment planning in energy systems dominated by wind and solar," Applied Energy, Elsevier, vol. 290(C).
    15. Àlex Alonso & Jordi de la Hoz & Helena Martín & Sergio Coronas & Pep Salas & José Matas, 2020. "A Comprehensive Model for the Design of a Microgrid under Regulatory Constraints Using Synthetical Data Generation and Stochastic Optimization," Energies, MDPI, vol. 13(21), pages 1-26, October.
    16. Tsao, Yu-Chung & Thanh, Vo-Van, 2021. "Toward sustainable microgrids with blockchain technology-based peer-to-peer energy trading mechanism: A fuzzy meta-heuristic approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 136(C).
    17. Gbalimene Richard Ileberi & Pu Li, 2023. "Integrating Hydrokinetic Energy into Hybrid Renewable Energy System: Optimal Design and Comparative Analysis," Energies, MDPI, vol. 16(8), pages 1-28, April.
    18. Yazdanie, M. & Orehounig, K., 2021. "Advancing urban energy system planning and modeling approaches: Gaps and solutions in perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    19. Sun, Xu & Liu, Yanli & Deng, Liangchen, 2020. "Reliability assessment of cyber-physical distribution network based on the fault tree," Renewable Energy, Elsevier, vol. 155(C), pages 1411-1424.
    20. Hoffmann, Maximilian & Priesmann, Jan & Nolting, Lars & Praktiknjo, Aaron & Kotzur, Leander & Stolten, Detlef, 2021. "Typical periods or typical time steps? A multi-model analysis to determine the optimal temporal aggregation for energy system models," Applied Energy, Elsevier, vol. 304(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:290:y:2021:i:c:s0306261921002373. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.