IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v228y2024ics0960148124006852.html
   My bibliography  Save this article

An energy management system to schedule the optimal participation to electricity markets and a statistical analysis of the bidding strategies over long time horizons

Author

Listed:
  • La Fata, Alice
  • Brignone, Massimo
  • Procopio, Renato
  • Bracco, Stefano
  • Delfino, Federico
  • Barbero, Giulia
  • Barilli, Riccardo

Abstract

This paper presents a tool that allows to perform an ex-ante estimation of the profitability to participate to the electric energy and service markets for a microgrid or a polygeneration power plant. The tool is the evolution of an Energy Management System (EMS) previously developed by the University of Genoa and Renantis Solutions Srl. Constraints are added to the original EMS to model the Ancillary Service Market (ASM) and Day Ahead Market (DAM) mechanisms in the framework of a planning tool that allows to get estimates of the microgrid/plant costs and revenues over a long-time horizon. As the market outcome strongly depends on the Transmission System Operator (TSO) acceptance/rejection of bids and offers, a statistical approach is proposed. The optimization process is split in two steps: the first one optimally dispatches the energy units and proposes DAM offers and ASM bid and offers over a specified time horizon. Then, a Monte Carlo method is launched; at each extraction the TSO acceptance/rejection of each ASM bid and offer is simulated and there is a second step of optimization in which the energy sources are optimally re-dispatched to meet the bidding program and so to avoid imbalance power exchange that would increase the energy cost. The cost/revenue is thus computed at each extraction. The result is the probability density function of the costs/revenues that allows to estimate the profitability of the participation to the electricity markets. One test performed on a real microgrid shows that the computational time needed to complete one iteration related to a time horizon of one month is approximately 20 s. Moreover, the comparison of the outcomes with two independent launches to define the set of bids and offers to be accepted in ASM demonstrates that the statistical analysis allows to avoid misleading conclusions on the costs/revenues. Consequently, the fact that the developed EMS allows to perform a statistical analysis in a reasonable time enables the possibility of comparing multiple scenarios and gives an indication related to the range of cost/revenues in which the microgrid/plant may incur. Finally, the computational efficiency of the proposed approach allows to conclude that the developed EMS is appropriate to perform a long-time horizon (of the order of magnitude of years) analysis and, at the same time, allows to model all the involved components with a high level of details.

Suggested Citation

  • La Fata, Alice & Brignone, Massimo & Procopio, Renato & Bracco, Stefano & Delfino, Federico & Barbero, Giulia & Barilli, Riccardo, 2024. "An energy management system to schedule the optimal participation to electricity markets and a statistical analysis of the bidding strategies over long time horizons," Renewable Energy, Elsevier, vol. 228(C).
  • Handle: RePEc:eee:renene:v:228:y:2024:i:c:s0960148124006852
    DOI: 10.1016/j.renene.2024.120617
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124006852
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.120617?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zheng, Yanchong & Wang, Yubin & Yang, Qiang, 2023. "Bidding strategy design for electric vehicle aggregators in the day-ahead electricity market considering price volatility: A risk-averse approach," Energy, Elsevier, vol. 283(C).
    2. Mazzola, Simone & Vergara, Claudio & Astolfi, Marco & Li, Vivian & Perez-Arriaga, Ignacio & Macchi, Ennio, 2017. "Assessing the value of forecast-based dispatch in the operation of off-grid rural microgrids," Renewable Energy, Elsevier, vol. 108(C), pages 116-125.
    3. Franco, Alessandro & Salza, Pasquale, 2011. "Strategies for optimal penetration of intermittent renewables in complex energy systems based on techno-operational objectives," Renewable Energy, Elsevier, vol. 36(2), pages 743-753.
    4. Welsch, Manuel & Deane, Paul & Howells, Mark & Ó Gallachóir, Brian & Rogan, Fionn & Bazilian, Morgan & Rogner, Hans-Holger, 2014. "Incorporating flexibility requirements into long-term energy system models – A case study on high levels of renewable electricity penetration in Ireland," Applied Energy, Elsevier, vol. 135(C), pages 600-615.
    5. Nelson, James R. & Johnson, Nathan G., 2020. "Model predictive control of microgrids for real-time ancillary service market participation," Applied Energy, Elsevier, vol. 269(C).
    6. Ben Christopher, S.J. & Carolin Mabel, M., 2020. "A bio-inspired approach for probabilistic energy management of micro-grid incorporating uncertainty in statistical cost estimation," Energy, Elsevier, vol. 203(C).
    7. Denholm, Paul & Hand, Maureen, 2011. "Grid flexibility and storage required to achieve very high penetration of variable renewable electricity," Energy Policy, Elsevier, vol. 39(3), pages 1817-1830, March.
    8. Fusco, Andrea & Gioffrè, Domenico & Francesco Castelli, Alessandro & Bovo, Cristian & Martelli, Emanuele, 2023. "A multi-stage stochastic programming model for the unit commitment of conventional and virtual power plants bidding in the day-ahead and ancillary services markets," Applied Energy, Elsevier, vol. 336(C).
    9. Moreno, Blanca & López, Ana J. & García-Álvarez, María Teresa, 2012. "The electricity prices in the European Union. The role of renewable energies and regulatory electric market reforms," Energy, Elsevier, vol. 48(1), pages 307-313.
    10. Thomas, Dimitrios & Deblecker, Olivier & Ioakimidis, Christos S., 2016. "Optimal design and techno-economic analysis of an autonomous small isolated microgrid aiming at high RES penetration," Energy, Elsevier, vol. 116(P1), pages 364-379.
    11. Tuohy, Aidan & Meibom, Peter & Denny, Eleanor & O'Malley, Mark, 2009. "Unit commitment for systems with significant wind penetration," MPRA Paper 34849, University Library of Munich, Germany.
    12. Motamedi Sedeh, Omid & Ostadi, Bakhtiar, 2020. "Optimization of bidding strategy in the day-ahead market by consideration of seasonality trend of the market spot price," Energy Policy, Elsevier, vol. 145(C).
    13. Oree, Vishwamitra & Sayed Hassen, Sayed Z. & Fleming, Peter J., 2017. "Generation expansion planning optimisation with renewable energy integration: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 790-803.
    14. Ding, Yi & Shao, Changzheng & Yan, Jinyue & Song, Yonghua & Zhang, Chi & Guo, Chuangxin, 2018. "Economical flexibility options for integrating fluctuating wind energy in power systems: The case of China," Applied Energy, Elsevier, vol. 228(C), pages 426-436.
    15. Moretti, Luca & Martelli, Emanuele & Manzolini, Giampaolo, 2020. "An efficient robust optimization model for the unit commitment and dispatch of multi-energy systems and microgrids," Applied Energy, Elsevier, vol. 261(C).
    16. Manríquez, Francisco & Sauma, Enzo & Aguado, José & de la Torre, Sebastián & Contreras, Javier, 2020. "The impact of electric vehicle charging schemes in power system expansion planning," Applied Energy, Elsevier, vol. 262(C).
    17. Bendato, Ilaria & Bonfiglio, Andrea & Brignone, Massimo & Delfino, Federico & Pampararo, Fabio & Procopio, Renato, 2017. "A real-time Energy Management System for the integration of economical aspects and system operator requirements: Definition and validation," Renewable Energy, Elsevier, vol. 102(PB), pages 406-416.
    18. La Fata, Alice & Brignone, Massimo & Procopio, Renato & Bracco, Stefano & Delfino, Federico & Barilli, Riccardo & Ravasi, Martina & Zanellini, Fabio, 2022. "An efficient Energy Management System for long term planning and real time scheduling of flexible polygeneration systems," Renewable Energy, Elsevier, vol. 200(C), pages 1180-1201.
    19. Hui, Hongxun & Ding, Yi & Song, Yonghua & Rahman, Saifur, 2019. "Modeling and control of flexible loads for frequency regulation services considering compensation of communication latency and detection error," Applied Energy, Elsevier, vol. 250(C), pages 161-174.
    20. Zhou, Yizhou & Wei, Zhinong & Sun, Guoqiang & Cheung, Kwok W. & Zang, Haixiang & Chen, Sheng, 2018. "A robust optimization approach for integrated community energy system in energy and ancillary service markets," Energy, Elsevier, vol. 148(C), pages 1-15.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. La Fata, Alice & Brignone, Massimo & Procopio, Renato & Bracco, Stefano & Delfino, Federico & Barilli, Riccardo & Ravasi, Martina & Zanellini, Fabio, 2022. "An efficient Energy Management System for long term planning and real time scheduling of flexible polygeneration systems," Renewable Energy, Elsevier, vol. 200(C), pages 1180-1201.
    2. Yoro, Kelvin O. & Daramola, Michael O. & Sekoai, Patrick T. & Wilson, Uwemedimo N. & Eterigho-Ikelegbe, Orevaoghene, 2021. "Update on current approaches, challenges, and prospects of modeling and simulation in renewable and sustainable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    3. Polimeni, Simone & Moretti, Luca & Martelli, Emanuele & Leva, Sonia & Manzolini, Giampaolo, 2023. "A novel stochastic model for flexible unit commitment of off-grid microgrids," Applied Energy, Elsevier, vol. 331(C).
    4. Guandalini, Giulio & Campanari, Stefano & Romano, Matteo C., 2015. "Power-to-gas plants and gas turbines for improved wind energy dispatchability: Energy and economic assessment," Applied Energy, Elsevier, vol. 147(C), pages 117-130.
    5. Figueiredo, Nuno Carvalho & Silva, Patrícia Pereira da & Cerqueira, Pedro A., 2016. "It is windy in Denmark: Does market integration suffer?," Energy, Elsevier, vol. 115(P2), pages 1385-1399.
    6. Yan, Rujing & Wang, Jiangjiang & Wang, Jiahao & Tian, Lei & Tang, Saiqiu & Wang, Yuwei & Zhang, Jing & Cheng, Youliang & Li, Yuan, 2022. "A two-stage stochastic-robust optimization for a hybrid renewable energy CCHP system considering multiple scenario-interval uncertainties," Energy, Elsevier, vol. 247(C).
    7. Andrychowicz, Mateusz & Olek, Blazej & Przybylski, Jakub, 2017. "Review of the methods for evaluation of renewable energy sources penetration and ramping used in the Scenario Outlook and Adequacy Forecast 2015. Case study for Poland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 703-714.
    8. Dranka, Géremi Gilson & Ferreira, Paula & Vaz, A. Ismael F., 2021. "A review of co-optimization approaches for operational and planning problems in the energy sector," Applied Energy, Elsevier, vol. 304(C).
    9. Johnson, Samuel C. & Papageorgiou, Dimitri J. & Mallapragada, Dharik S. & Deetjen, Thomas A. & Rhodes, Joshua D. & Webber, Michael E., 2019. "Evaluating rotational inertia as a component of grid reliability with high penetrations of variable renewable energy," Energy, Elsevier, vol. 180(C), pages 258-271.
    10. Haas, J. & Cebulla, F. & Cao, K. & Nowak, W. & Palma-Behnke, R. & Rahmann, C. & Mancarella, P., 2017. "Challenges and trends of energy storage expansion planning for flexibility provision in low-carbon power systems – a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 603-619.
    11. Mehigan, L. & Deane, J.P. & Gallachóir, B.P.Ó. & Bertsch, V., 2018. "A review of the role of distributed generation (DG) in future electricity systems," Energy, Elsevier, vol. 163(C), pages 822-836.
    12. McDonagh, Shane & Deane, Paul & Rajendran, Karthik & Murphy, Jerry D., 2019. "Are electrofuels a sustainable transport fuel? Analysis of the effect of controls on carbon, curtailment, and cost of hydrogen," Applied Energy, Elsevier, vol. 247(C), pages 716-730.
    13. Salci, Sener & Jenkins, Glenn, 2016. "An Economic and Stakeholder Analysis for the Design of IPP Contracts for Wind Farms," MPRA Paper 70578, University Library of Munich, Germany.
    14. Fontenot, Hannah & Dong, Bing, 2019. "Modeling and control of building-integrated microgrids for optimal energy management – A review," Applied Energy, Elsevier, vol. 254(C).
    15. Mehra, Varun & Amatya, Reja & Ram, Rajeev J., 2018. "Estimating the value of demand-side management in low-cost, solar micro-grids," Energy, Elsevier, vol. 163(C), pages 74-87.
    16. Markovska, Natasa & Duić, Neven & Mathiesen, Brian Vad & Guzović, Zvonimir & Piacentino, Antonio & Schlör, Holger & Lund, Henrik, 2016. "Addressing the main challenges of energy security in the twenty-first century – Contributions of the conferences on Sustainable Development of Energy, Water and Environment Systems," Energy, Elsevier, vol. 115(P3), pages 1504-1512.
    17. McDonagh, Shane & Wall, David M. & Deane, Paul & Murphy, Jerry D., 2019. "The effect of electricity markets, and renewable electricity penetration, on the levelised cost of energy of an advanced electro-fuel system incorporating carbon capture and utilisation," Renewable Energy, Elsevier, vol. 131(C), pages 364-371.
    18. Vrionis, Constantinos & Tsalavoutis, Vasilios & Tolis, Athanasios, 2020. "A Generation Expansion Planning model for integrating high shares of renewable energy: A Meta-Model Assisted Evolutionary Algorithm approach," Applied Energy, Elsevier, vol. 259(C).
    19. Deetjen, Thomas A. & Martin, Henry & Rhodes, Joshua D. & Webber, Michael E., 2018. "Modeling the optimal mix and location of wind and solar with transmission and carbon pricing considerations," Renewable Energy, Elsevier, vol. 120(C), pages 35-50.
    20. Niina Helistö & Juha Kiviluoma & Hannele Holttinen & Jose Daniel Lara & Bri‐Mathias Hodge, 2019. "Including operational aspects in the planning of power systems with large amounts of variable generation: A review of modeling approaches," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 8(5), September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:228:y:2024:i:c:s0960148124006852. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.