IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v275y2020ics0306261920308333.html
   My bibliography  Save this article

Adaptive time-delay control of flexible loads in power systems facing accidental outages

Author

Listed:
  • Hui, Hongxun
  • Ding, Yi
  • Song, Yonghua

Abstract

The accidental outages of generating units are increasing in power systems, which can bring huge power shortage suddenly and lead to severe system oscillations. The secure operation of power systems sometimes cannot be guaranteed only by regulating traditional generating units, due to the rapid regulation requirement of making up for power shortage. To address this issue, this paper proposes using emergency demand response (DR) to provide contingency reserve capacities by adjusting the power consumption of flexible loads (FLs). Firstly, in order to analyze the dynamic regulation process of power systems in accidental outages, the power system model in faulty condition is reconstructed to obtain the regulation power from well-running generators. On this basis, FLs are modelled and integrated into the novel reconstructed power system model to be as an alternative method of making up for the fast regulation capacities. Considering that the inevitable communication time-delay probably leads to the slowdown of response speed and endangers the system security, an adaptive time-delay control (ATDC) scheme is proposed and integrated into the control process of aggregated FLs. In this manner, the regulation speed of FLs can be accelerated, the control precision of response capacities can be improved, and the power system frequency deviations caused by time-delay can be decreased. Finally, the proposed models and methods are verified by numerical studies. The results in the test system show that the frequency deviations can be decreased effectively from −0.3276 Hz to −0.1337 Hz in accidental outages by using the ATDC scheme of FLs.

Suggested Citation

  • Hui, Hongxun & Ding, Yi & Song, Yonghua, 2020. "Adaptive time-delay control of flexible loads in power systems facing accidental outages," Applied Energy, Elsevier, vol. 275(C).
  • Handle: RePEc:eee:appene:v:275:y:2020:i:c:s0306261920308333
    DOI: 10.1016/j.apenergy.2020.115321
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261920308333
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2020.115321?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Mingshen & Mu, Yunfei & Jia, Hongjie & Wu, Jianzhong & Yu, Xiaodan & Qi, Yan, 2017. "Active power regulation for large-scale wind farms through an efficient power plant model of electric vehicles," Applied Energy, Elsevier, vol. 185(P2), pages 1673-1683.
    2. Hui, Hongxun & Ding, Yi & Liu, Weidong & Lin, You & Song, Yonghua, 2017. "Operating reserve evaluation of aggregated air conditioners," Applied Energy, Elsevier, vol. 196(C), pages 218-228.
    3. Zhang, Xiangyu & Pipattanasomporn, Manisa & Rahman, Saifur, 2017. "A self-learning algorithm for coordinated control of rooftop units in small- and medium-sized commercial buildings," Applied Energy, Elsevier, vol. 205(C), pages 1034-1049.
    4. Hui, Hongxun & Ding, Yi & Shi, Qingxin & Li, Fangxing & Song, Yonghua & Yan, Jinyue, 2020. "5G network-based Internet of Things for demand response in smart grid: A survey on application potential," Applied Energy, Elsevier, vol. 257(C).
    5. Cai, Mengmeng & Pipattanasomporn, Manisa & Rahman, Saifur, 2019. "Day-ahead building-level load forecasts using deep learning vs. traditional time-series techniques," Applied Energy, Elsevier, vol. 236(C), pages 1078-1088.
    6. Hui, Hongxun & Ding, Yi & Song, Yonghua & Rahman, Saifur, 2019. "Modeling and control of flexible loads for frequency regulation services considering compensation of communication latency and detection error," Applied Energy, Elsevier, vol. 250(C), pages 161-174.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hessam Golmohamadi, 2022. "Demand-Side Flexibility in Power Systems: A Survey of Residential, Industrial, Commercial, and Agricultural Sectors," Sustainability, MDPI, vol. 14(13), pages 1-16, June.
    2. Song, Yuguang & Xia, Mingchao & Chen, Qifang, 2023. "The robust synchronization control scheme for flexible resources considering the stochastic and delay response process," Applied Energy, Elsevier, vol. 343(C).
    3. Yang, Shaohua & Lao, Keng-Weng & Hui, Hongxun & Chen, Yulin, 2023. "A robustness-enhanced frequency regulation scheme for power system against multiple cyber and physical emergency events," Applied Energy, Elsevier, vol. 350(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hui, Hongxun & Ding, Yi & Song, Yonghua & Rahman, Saifur, 2019. "Modeling and control of flexible loads for frequency regulation services considering compensation of communication latency and detection error," Applied Energy, Elsevier, vol. 250(C), pages 161-174.
    2. Hui, Hongxun & Ding, Yi & Shi, Qingxin & Li, Fangxing & Song, Yonghua & Yan, Jinyue, 2020. "5G network-based Internet of Things for demand response in smart grid: A survey on application potential," Applied Energy, Elsevier, vol. 257(C).
    3. Ahmad, Tanveer & Chen, Huanxin, 2019. "Deep learning for multi-scale smart energy forecasting," Energy, Elsevier, vol. 175(C), pages 98-112.
    4. Ibrahim, Muhammad Sohail & Dong, Wei & Yang, Qiang, 2020. "Machine learning driven smart electric power systems: Current trends and new perspectives," Applied Energy, Elsevier, vol. 272(C).
    5. Oshnoei, Arman & Kheradmandi, Morteza & Blaabjerg, Frede & Hatziargyriou, Nikos D. & Muyeen, S.M. & Anvari-Moghaddam, Amjad, 2022. "Coordinated control scheme for provision of frequency regulation service by virtual power plants," Applied Energy, Elsevier, vol. 325(C).
    6. Hui, Hongxun & Chen, Yulin & Yang, Shaohua & Zhang, Hongcai & Jiang, Tao, 2022. "Coordination control of distributed generators and load resources for frequency restoration in isolated urban microgrids," Applied Energy, Elsevier, vol. 327(C).
    7. Cai, Shanshan & Li, Xu & Yang, Ling & Hua, Zhipeng & Li, Song & Tu, Zhengkai, 2024. "Demand flexibility and its impact on a PEM fuel cell-based integrated energy supply system with humidity control," Renewable Energy, Elsevier, vol. 228(C).
    8. Cai, Mengmeng & Pipattanasomporn, Manisa & Rahman, Saifur, 2019. "Day-ahead building-level load forecasts using deep learning vs. traditional time-series techniques," Applied Energy, Elsevier, vol. 236(C), pages 1078-1088.
    9. Ma, Liya & Hui, Hongxun & Wang, Sheng & Song, Yonghua, 2024. "Coordinated optimization of power-communication coupling networks for dispatching large-scale flexible loads to provide operating reserve," Applied Energy, Elsevier, vol. 359(C).
    10. Shan, Kui & Wang, Shengwei & Zhuang, Chaoqun, 2021. "Controlling a large constant speed centrifugal chiller to provide grid frequency regulation: A validation based on onsite tests," Applied Energy, Elsevier, vol. 300(C).
    11. Kim, Donghun & Braun, James E., 2020. "Model predictive control for supervising multiple rooftop unit economizers to fully leverage free cooling energy resource," Applied Energy, Elsevier, vol. 275(C).
    12. Alexandra L’Heureux & Katarina Grolinger & Miriam A. M. Capretz, 2022. "Transformer-Based Model for Electrical Load Forecasting," Energies, MDPI, vol. 15(14), pages 1-23, July.
    13. Turki Alsuwian & Aiman Shahid Butt & Arslan Ahmed Amin, 2022. "Smart Grid Cyber Security Enhancement: Challenges and Solutions—A Review," Sustainability, MDPI, vol. 14(21), pages 1-21, October.
    14. Jeddi, Babak & Mishra, Yateendra & Ledwich, Gerard, 2021. "Distributed load scheduling in residential neighborhoods for coordinated operation of multiple home energy management systems," Applied Energy, Elsevier, vol. 300(C).
    15. Jihoon Moon & Junhong Kim & Pilsung Kang & Eenjun Hwang, 2020. "Solving the Cold-Start Problem in Short-Term Load Forecasting Using Tree-Based Methods," Energies, MDPI, vol. 13(4), pages 1-37, February.
    16. Mehar Ullah & Daniel Gutierrez-Rojas & Eero Inkeri & Tero Tynjälä & Pedro H. J. Nardelli, 2022. "Operation of Power-to-X-Related Processes Based on Advanced Data-Driven Methods: A Comprehensive Review," Energies, MDPI, vol. 15(21), pages 1-17, October.
    17. Sun, Mingyi & Zhao, Xia & Tan, Hong & Li, Xinyi, 2022. "Coordinated operation of the integrated electricity-water distribution system and water-cooled 5G base stations," Energy, Elsevier, vol. 238(PC).
    18. Wang, Kejun & Qi, Xiaoxia & Liu, Hongda, 2019. "A comparison of day-ahead photovoltaic power forecasting models based on deep learning neural network," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    19. Shan, Kui & Wang, Shengwei, 2017. "Energy efficient design and control of cleanroom environment control systems in subtropical regions – A comparative analysis and on-site validation," Applied Energy, Elsevier, vol. 204(C), pages 582-595.
    20. Jonathan Berrisch & Micha{l} Narajewski & Florian Ziel, 2022. "High-Resolution Peak Demand Estimation Using Generalized Additive Models and Deep Neural Networks," Papers 2203.03342, arXiv.org, revised Nov 2022.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:275:y:2020:i:c:s0306261920308333. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.