IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v216y2018icp338-347.html
   My bibliography  Save this article

Operating reserve capacity evaluation of aggregated heterogeneous TCLs with price signals

Author

Listed:
  • Xie, Dunjian
  • Hui, Hongxun
  • Ding, Yi
  • Lin, Zhenzhi

Abstract

Thermostatically controlled loads (TCLs) have been studied to provide operating reserve for maintaining power balance between supply and demand. However, operating reserve capacity (ORC) supplied by aggregated TCLs is difficult to evaluate, due to the insufficient information of heterogeneous TCLs and consumer behaviors. This paper proposes a quantitative ORC evaluation method for large-scale aggregated heterogeneous TCLs without sufficient measurement data. Firstly, an individual TCL model on account of consumer behaviors is developed to characterize the impact of fluctuated electricity prices and different thermal comfort requirements. Secondly, a novel optimization model of heterogeneous TCLs, which can guarantee consumer satisfaction, is proposed to provide operating reserve for power systems. Thirdly, the probability density estimation (PDE) method is developed to evaluate the ORC provided by large-scale heterogeneous TCLs with insufficient data. Numerical studies illustrate the effectiveness of the proposed models and methods.

Suggested Citation

  • Xie, Dunjian & Hui, Hongxun & Ding, Yi & Lin, Zhenzhi, 2018. "Operating reserve capacity evaluation of aggregated heterogeneous TCLs with price signals," Applied Energy, Elsevier, vol. 216(C), pages 338-347.
  • Handle: RePEc:eee:appene:v:216:y:2018:i:c:p:338-347
    DOI: 10.1016/j.apenergy.2018.02.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261918301302
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2018.02.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bianchini, Gianni & Casini, Marco & Vicino, Antonio & Zarrilli, Donato, 2016. "Demand-response in building heating systems: A Model Predictive Control approach," Applied Energy, Elsevier, vol. 168(C), pages 159-170.
    2. Dehghanpour, Kaveh & Afsharnia, Saeed, 2015. "Electrical demand side contribution to frequency control in power systems: a review on technical aspects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1267-1276.
    3. Joseph Persky, 1995. "The Ethology of Homo Economicus," Journal of Economic Perspectives, American Economic Association, vol. 9(2), pages 221-231, Spring.
    4. Siano, Pierluigi & Sarno, Debora, 2016. "Assessing the benefits of residential demand response in a real time distribution energy market," Applied Energy, Elsevier, vol. 161(C), pages 533-551.
    5. Allcott, Hunt, 2011. "Rethinking real-time electricity pricing," Resource and Energy Economics, Elsevier, vol. 33(4), pages 820-842.
    6. Chao, Hung-po, 2010. "Price-Responsive Demand Management for a Smart Grid World," The Electricity Journal, Elsevier, vol. 23(1), pages 7-20, January.
    7. Chassin, David P. & Rondeau, Daniel, 2016. "Aggregate modeling of fast-acting demand response and control under real-time pricing," Applied Energy, Elsevier, vol. 181(C), pages 288-298.
    8. Gu, Chenghong & Yan, Xiaohe & Yan, Zhang & Li, Furong, 2017. "Dynamic pricing for responsive demand to increase distribution network efficiency," Applied Energy, Elsevier, vol. 205(C), pages 236-243.
    9. He, Xian & Keyaerts, Nico & Azevedo, Isabel & Meeus, Leonardo & Hancher, Leigh & Glachant, Jean-Michel, 2013. "How to engage consumers in demand response: A contract perspective," Utilities Policy, Elsevier, vol. 27(C), pages 108-122.
    10. Qv, Dehu & Dong, Bingbing & Cao, Lin & Ni, Long & Wang, Jijin & Shang, Runxin & Yao, Yang, 2017. "An experimental and theoretical study on an injection-assisted air-conditioner using R32 in the refrigeration cycle," Applied Energy, Elsevier, vol. 185(P1), pages 791-804.
    11. Hui, Hongxun & Ding, Yi & Liu, Weidong & Lin, You & Song, Yonghua, 2017. "Operating reserve evaluation of aggregated air conditioners," Applied Energy, Elsevier, vol. 196(C), pages 218-228.
    12. Gomez, Juan A. & Anjos, Miguel F., 2017. "Power capacity profile estimation for building heating and cooling in demand-side management," Applied Energy, Elsevier, vol. 191(C), pages 492-501.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Yu & Xu, Yan & Tang, Yi, 2019. "Distributed aggregation control of grid-interactive smart buildings for power system frequency support," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    2. Xie, Kang & Hui, Hongxun & Ding, Yi & Song, Yonghua & Ye, Chengjin & Zheng, Wandong & Ye, Shuiquan, 2022. "Modeling and control of central air conditionings for providing regulation services for power systems," Applied Energy, Elsevier, vol. 315(C).
    3. Hui, Hongxun & Ding, Yi & Shi, Qingxin & Li, Fangxing & Song, Yonghua & Yan, Jinyue, 2020. "5G network-based Internet of Things for demand response in smart grid: A survey on application potential," Applied Energy, Elsevier, vol. 257(C).
    4. Wang, Sheng & Shao, Changzheng & Ding, Yi & Yan, Jinyue, 2019. "Operational reliability of multi-energy customers considering service-based self-scheduling," Applied Energy, Elsevier, vol. 254(C).
    5. Ding, Yi & Cui, Wenqi & Zhang, Shujun & Hui, Hongxun & Qiu, Yiwei & Song, Yonghua, 2019. "Multi-state operating reserve model of aggregate thermostatically-controlled-loads for power system short-term reliability evaluation," Applied Energy, Elsevier, vol. 241(C), pages 46-58.
    6. Hui, Hongxun & Ding, Yi & Song, Yonghua & Rahman, Saifur, 2019. "Modeling and control of flexible loads for frequency regulation services considering compensation of communication latency and detection error," Applied Energy, Elsevier, vol. 250(C), pages 161-174.
    7. Mir Sayed Shah Danish & Tomonobu Senjyu & Sayed Mir Shah Danish & Najib Rahman Sabory & Narayanan K & Paras Mandal, 2019. "A Recap of Voltage Stability Indices in the Past Three Decades," Energies, MDPI, vol. 12(8), pages 1-18, April.
    8. Song, Yuguang & Chen, Fangjian & Xia, Mingchao & Chen, Qifang, 2022. "The interactive dispatch strategy for thermostatically controlled loads based on the source–load collaborative evolution," Applied Energy, Elsevier, vol. 309(C).
    9. Hongbo Shao & Yubin Mao & Yongmin Liu & Wanxun Liu & Sipei Sun & Peng Jia & Fufeng Miao & Li Yang & Chang Han & Bo Zhang, 2018. "A Three-Stage Procedure for Controlled Islanding to Prevent Wide-Area Blackouts," Energies, MDPI, vol. 11(11), pages 1-15, November.
    10. Wei, Congying & Xu, Jian & Liao, Siyang & Sun, Yuanzhang & Jiang, Yibo & Zhang, Zhen, 2018. "Coordination optimization of multiple thermostatically controlled load groups in distribution network with renewable energy," Applied Energy, Elsevier, vol. 231(C), pages 456-467.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Jixiang & Chen, Xingying & Xie, Jun & Xu, Shuyang & Yu, Kun & Gan, Lei, 2019. "Dynamic control strategy of residential air conditionings considering environmental and behavioral uncertainties," Applied Energy, Elsevier, vol. 250(C), pages 1312-1320.
    2. Hui, Hongxun & Ding, Yi & Liu, Weidong & Lin, You & Song, Yonghua, 2017. "Operating reserve evaluation of aggregated air conditioners," Applied Energy, Elsevier, vol. 196(C), pages 218-228.
    3. Osaru Agbonaye & Patrick Keatley & Ye Huang & Motasem Bani Mustafa & Neil Hewitt, 2020. "Design, Valuation and Comparison of Demand Response Strategies for Congestion Management," Energies, MDPI, vol. 13(22), pages 1-29, November.
    4. Katz, Jonas, 2014. "Linking meters and markets: Roles and incentives to support a flexible demand side," Utilities Policy, Elsevier, vol. 31(C), pages 74-84.
    5. Daniel Adelman & Canan Uçkun, 2019. "Dynamic Electricity Pricing to Smart Homes," Operations Research, INFORMS, vol. 67(6), pages 1520-1542, November.
    6. Behboodi, Sahand & Chassin, David P. & Djilali, Ned & Crawford, Curran, 2018. "Transactive control of fast-acting demand response based on thermostatic loads in real-time retail electricity markets," Applied Energy, Elsevier, vol. 210(C), pages 1310-1320.
    7. Paterakis, Nikolaos G. & Erdinç, Ozan & Catalão, João P.S., 2017. "An overview of Demand Response: Key-elements and international experience," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 871-891.
    8. Märkle-Huß, Joscha & Feuerriegel, Stefan & Neumann, Dirk, 2018. "Large-scale demand response and its implications for spot prices, load and policies: Insights from the German-Austrian electricity market," Applied Energy, Elsevier, vol. 210(C), pages 1290-1298.
    9. Boßmann, Tobias & Eser, Eike Johannes, 2016. "Model-based assessment of demand-response measures—A comprehensive literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1637-1656.
    10. Nezamoddini, Nasim & Wang, Yong, 2017. "Real-time electricity pricing for industrial customers: Survey and case studies in the United States," Applied Energy, Elsevier, vol. 195(C), pages 1023-1037.
    11. Nan, Sibo & Zhou, Ming & Li, Gengyin, 2018. "Optimal residential community demand response scheduling in smart grid," Applied Energy, Elsevier, vol. 210(C), pages 1280-1289.
    12. Malik, Anam & Haghdadi, Navid & MacGill, Iain & Ravishankar, Jayashri, 2019. "Appliance level data analysis of summer demand reduction potential from residential air conditioner control," Applied Energy, Elsevier, vol. 235(C), pages 776-785.
    13. Cédric Clastres & Haikel Khalfallah, 2020. "Retailers' strategies facing demand response and markets interactions," Working Papers hal-03167543, HAL.
    14. Ottavia Valentini & Nikoleta Andreadou & Paolo Bertoldi & Alexandre Lucas & Iolanda Saviuc & Evangelos Kotsakis, 2022. "Demand Response Impact Evaluation: A Review of Methods for Estimating the Customer Baseline Load," Energies, MDPI, vol. 15(14), pages 1-36, July.
    15. Soroudi, Alireza & Rabiee, Abbas & Keane, Andrew, 2017. "Distribution networks' energy losses versus hosting capacity of wind power in the presence of demand flexibility," Renewable Energy, Elsevier, vol. 102(PB), pages 316-325.
    16. Fang, Debin & Wang, Pengyu, 2023. "Optimal real-time pricing and electricity package by retail electric providers based on social learning," Energy Economics, Elsevier, vol. 117(C).
    17. Clastres, Cédric & Khalfallah, Haikel, 2021. "Dynamic pricing efficiency with strategic retailers and consumers: An analytical analysis of short-term market interactions," Energy Economics, Elsevier, vol. 98(C).
    18. Vincenzo Trovato & Antonio De Paola & Goran Strbac, 2020. "Distributed Control of Clustered Populations of Thermostatic Loads in Multi-Area Systems: A Mean Field Game Approach," Energies, MDPI, vol. 13(24), pages 1-26, December.
    19. Hui, Hongxun & Ding, Yi & Song, Yonghua & Rahman, Saifur, 2019. "Modeling and control of flexible loads for frequency regulation services considering compensation of communication latency and detection error," Applied Energy, Elsevier, vol. 250(C), pages 161-174.
    20. Cédric Clastres & Haikel Khalfallah, 2021. "Dynamic pricing efficiency with strategic retailers and consumers: An analytical analysis of short-term market interactions," Post-Print hal-03193212, HAL.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:216:y:2018:i:c:p:338-347. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.