IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v327y2022ics0306261922013733.html
   My bibliography  Save this article

Coordination control of distributed generators and load resources for frequency restoration in isolated urban microgrids

Author

Listed:
  • Hui, Hongxun
  • Chen, Yulin
  • Yang, Shaohua
  • Zhang, Hongcai
  • Jiang, Tao

Abstract

Urban microgrids have become the main body of energy consumption in modern power systems. To reduce carbon emissions, distributed generators (DGs), such as roof photovoltaics (PVs), are increasing rapidly in urban microgrids. By utilizing the power output from local DGs, more microgrids have the ability to operate in isolated mode. However, isolated microgrids have less regulation capacities compared with large interconnected power systems, which significantly raises the difficulty for maintaining the stable operation of isolated microgrids. To address this issue, this paper proposes a coordination control method to tap flexibility from both DGs in supply-side and load resources in demand-side. First, the microgrid model with high-penetration DGs is developed considering virtual power plants (VPPs) by aggregating flexible loads. Then, a coordination control framework is proposed for DGs and VPPs in multi-scenarios, including stable operation, uncertain load disturbances, and accidental DG outages. Based on this framework, a distributed consensus algorithm (DCA) and a local control algorithm (LCA) are designed for DGs and VPPs, respectively. The DCA can achieve a quick regulation of DGs with high plug-and-play expansibility. The LCA can control VPPs considering both the quality of regulation services and comfortable requirements of heterogeneous users. Finally, numerical studies verify that the proposed models and methods can awaken fragmented DGs and VPPs to improve the stability and enhance the resilience of isolated microgrids.

Suggested Citation

  • Hui, Hongxun & Chen, Yulin & Yang, Shaohua & Zhang, Hongcai & Jiang, Tao, 2022. "Coordination control of distributed generators and load resources for frequency restoration in isolated urban microgrids," Applied Energy, Elsevier, vol. 327(C).
  • Handle: RePEc:eee:appene:v:327:y:2022:i:c:s0306261922013733
    DOI: 10.1016/j.apenergy.2022.120116
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261922013733
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2022.120116?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zheng, Menglian & Wang, Xinhao & Meinrenken, Christoph J. & Ding, Yi, 2018. "Economic and environmental benefits of coordinating dispatch among distributed electricity storage," Applied Energy, Elsevier, vol. 210(C), pages 842-855.
    2. Kim, Youngjin & Norford, Leslie K., 2017. "Optimal use of thermal energy storage resources in commercial buildings through price-based demand response considering distribution network operation," Applied Energy, Elsevier, vol. 193(C), pages 308-324.
    3. Gan, Wei & Yan, Mingyu & Yao, Wei & Wen, Jinyu, 2021. "Peer to peer transactive energy for multiple energy hub with the penetration of high-level renewable energy," Applied Energy, Elsevier, vol. 295(C).
    4. Jiang, Tao & Li, Zening & Jin, Xiaolong & Chen, Houhe & Li, Xue & Mu, Yunfei, 2018. "Flexible operation of active distribution network using integrated smart buildings with heating, ventilation and air-conditioning systems," Applied Energy, Elsevier, vol. 226(C), pages 181-196.
    5. Zheng, Menglian & Meinrenken, Christoph J. & Lackner, Klaus S., 2014. "Agent-based model for electricity consumption and storage to evaluate economic viability of tariff arbitrage for residential sector demand response," Applied Energy, Elsevier, vol. 126(C), pages 297-306.
    6. Zhong, Haiwang & Zhang, Guanglun & Tan, Zhenfei & Ruan, Guangchun & Wang, Xuan, 2022. "Hierarchical collaborative expansion planning for transmission and distribution networks considering transmission cost allocation," Applied Energy, Elsevier, vol. 307(C).
    7. Zhang, Xiangyu & Pipattanasomporn, Manisa & Rahman, Saifur, 2017. "A self-learning algorithm for coordinated control of rooftop units in small- and medium-sized commercial buildings," Applied Energy, Elsevier, vol. 205(C), pages 1034-1049.
    8. Li, Yinxiao & Wang, Yi & Chen, Qixin, 2020. "Study on the impacts of meteorological factors on distributed photovoltaic accommodation considering dynamic line parameters," Applied Energy, Elsevier, vol. 259(C).
    9. Siano, Pierluigi & Sarno, Debora, 2016. "Assessing the benefits of residential demand response in a real time distribution energy market," Applied Energy, Elsevier, vol. 161(C), pages 533-551.
    10. Cai, Mengmeng & Pipattanasomporn, Manisa & Rahman, Saifur, 2019. "Day-ahead building-level load forecasts using deep learning vs. traditional time-series techniques," Applied Energy, Elsevier, vol. 236(C), pages 1078-1088.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Zhihao & Yang, Lun & Xu, Yinliang, 2023. "A dynamics-constrained method for distributed frequency regulation in low-inertia power systems," Applied Energy, Elsevier, vol. 344(C).
    2. Erdal Irmak & Ersan Kabalci & Yasin Kabalci, 2023. "Digital Transformation of Microgrids: A Review of Design, Operation, Optimization, and Cybersecurity," Energies, MDPI, vol. 16(12), pages 1-58, June.
    3. Yang, Shaohua & Lao, Keng-Weng & Hui, Hongxun & Chen, Yulin, 2023. "A robustness-enhanced frequency regulation scheme for power system against multiple cyber and physical emergency events," Applied Energy, Elsevier, vol. 350(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hui, Hongxun & Ding, Yi & Song, Yonghua & Rahman, Saifur, 2019. "Modeling and control of flexible loads for frequency regulation services considering compensation of communication latency and detection error," Applied Energy, Elsevier, vol. 250(C), pages 161-174.
    2. Meinrenken, Christoph J. & Mehmani, Ali, 2019. "Concurrent optimization of thermal and electric storage in commercial buildings to reduce operating cost and demand peaks under time-of-use tariffs," Applied Energy, Elsevier, vol. 254(C).
    3. Li, Zening & Su, Su & Jin, Xiaolong & Chen, Houhe, 2021. "Distributed energy management for active distribution network considering aggregated office buildings," Renewable Energy, Elsevier, vol. 180(C), pages 1073-1087.
    4. Baxter Williams & Daniel Bishop & Patricio Gallardo & J. Geoffrey Chase, 2023. "Demand Side Management in Industrial, Commercial, and Residential Sectors: A Review of Constraints and Considerations," Energies, MDPI, vol. 16(13), pages 1-28, July.
    5. Wang, Jixiang & Chen, Xingying & Xie, Jun & Xu, Shuyang & Yu, Kun & Gan, Lei, 2019. "Dynamic control strategy of residential air conditionings considering environmental and behavioral uncertainties," Applied Energy, Elsevier, vol. 250(C), pages 1312-1320.
    6. Li, Kangping & Wang, Fei & Mi, Zengqiang & Fotuhi-Firuzabad, Mahmoud & Duić, Neven & Wang, Tieqiang, 2019. "Capacity and output power estimation approach of individual behind-the-meter distributed photovoltaic system for demand response baseline estimation," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    7. Hui, Hongxun & Ding, Yi & Song, Yonghua, 2020. "Adaptive time-delay control of flexible loads in power systems facing accidental outages," Applied Energy, Elsevier, vol. 275(C).
    8. Barbero, Mattia & Casals, Lluc Canals & Corchero, Cristina, 2020. "Comparison between economic and environmental drivers for demand side aggregator," Utilities Policy, Elsevier, vol. 65(C).
    9. Hu, Maomao & Xiao, Fu & Wang, Lingshi, 2017. "Investigation of demand response potentials of residential air conditioners in smart grids using grey-box room thermal model," Applied Energy, Elsevier, vol. 207(C), pages 324-335.
    10. Kim, Donghun & Braun, James E., 2020. "Model predictive control for supervising multiple rooftop unit economizers to fully leverage free cooling energy resource," Applied Energy, Elsevier, vol. 275(C).
    11. Alexandra L’Heureux & Katarina Grolinger & Miriam A. M. Capretz, 2022. "Transformer-Based Model for Electrical Load Forecasting," Energies, MDPI, vol. 15(14), pages 1-23, July.
    12. Anilkumar, T.T. & Simon, Sishaj P. & Padhy, Narayana Prasad, 2017. "Residential electricity cost minimization model through open well-pico turbine pumped storage system," Applied Energy, Elsevier, vol. 195(C), pages 23-35.
    13. Zheng, Yingying & Jenkins, Bryan M. & Kornbluth, Kurt & Kendall, Alissa & Træholt, Chresten, 2018. "Optimization of a biomass-integrated renewable energy microgrid with demand side management under uncertainty," Applied Energy, Elsevier, vol. 230(C), pages 836-844.
    14. Lyu, Cheng & Jia, Youwei & Xu, Zhao, 2021. "Fully decentralized peer-to-peer energy sharing framework for smart buildings with local battery system and aggregated electric vehicles," Applied Energy, Elsevier, vol. 299(C).
    15. Luiz Almeida & Ana Soares & Pedro Moura, 2023. "A Systematic Review of Optimization Approaches for the Integration of Electric Vehicles in Public Buildings," Energies, MDPI, vol. 16(13), pages 1-26, June.
    16. Jihoon Moon & Junhong Kim & Pilsung Kang & Eenjun Hwang, 2020. "Solving the Cold-Start Problem in Short-Term Load Forecasting Using Tree-Based Methods," Energies, MDPI, vol. 13(4), pages 1-37, February.
    17. Sadeghianpourhamami, N. & Demeester, T. & Benoit, D.F. & Strobbe, M. & Develder, C., 2016. "Modeling and analysis of residential flexibility: Timing of white good usage," Applied Energy, Elsevier, vol. 179(C), pages 790-805.
    18. Motalleb, Mahdi & Thornton, Matsu & Reihani, Ehsan & Ghorbani, Reza, 2016. "A nascent market for contingency reserve services using demand response," Applied Energy, Elsevier, vol. 179(C), pages 985-995.
    19. Wang, Kejun & Qi, Xiaoxia & Liu, Hongda, 2019. "A comparison of day-ahead photovoltaic power forecasting models based on deep learning neural network," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    20. Sandoval, Diego & Goffin, Philippe & Leibundgut, Hansjürg, 2017. "How low exergy buildings and distributed electricity storage can contribute to flexibility within the demand side," Applied Energy, Elsevier, vol. 187(C), pages 116-127.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:327:y:2022:i:c:s0306261922013733. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.