IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v311y2022ics030626192200071x.html
   My bibliography  Save this article

Exploring the integrated flexible region of distributed multi-energy systems with process industry

Author

Listed:
  • Hui, Hengyu
  • Bao, Minglei
  • Ding, Yi
  • Song, Yonghua

Abstract

With the expanding share of fluctuating renewable energy, the conventional flexible resources provided by the supply side can no longer deal with the energy imbalance. On the demand side, distributed multi-energy systems with process industry (DMSPI) composed of the district energy supply system (DESS) and the process industry load (PIL) have tremendous potential to provide flexibility for the accommodation of more renewable energy. However, there is little study on the flexibility exploration and characterization of the DMSPI, hindering the utilization of such flexible resources by system operators. To address the problem, this paper proposes a projection-based method to evaluate the integrated flexible region (IFR) of the DMSPI considering the energy conversion in the DESS and production adjustment in the PIL. First, an energy-material integrated model based on the energy hub (EH) is proposed to couple the material flows of the PIL and the energy flows of the DESS. In the proposed model, the production target constraints of the PIL and energy interaction constraints of the DESS are considered. Moreover, the integrated flexibility of the DMSPI is mathematically expressed and defined as the IFR based on the polytopic projection. A calculation method based on vertex enumeration is proposed to find the IFR of the DMSPI. Case studies illustrate the effectiveness of the proposed method to explore the IFR of the DMSPI. The results show that the energy conversion and the adjustable production process endow the DMSPI with a substantial ability to convert and shift its multi-energy demand to provide flexibility for system operation.

Suggested Citation

  • Hui, Hengyu & Bao, Minglei & Ding, Yi & Song, Yonghua, 2022. "Exploring the integrated flexible region of distributed multi-energy systems with process industry," Applied Energy, Elsevier, vol. 311(C).
  • Handle: RePEc:eee:appene:v:311:y:2022:i:c:s030626192200071x
    DOI: 10.1016/j.apenergy.2022.118590
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626192200071X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2022.118590?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mancarella, Pierluigi, 2014. "MES (multi-energy systems): An overview of concepts and evaluation models," Energy, Elsevier, vol. 65(C), pages 1-17.
    2. Caro-Ruiz, C. & Lombardi, P. & Richter, M. & Pelzer, A. & Komarnicki, P. & Pavas, A. & Mojica-Nava, E., 2019. "Coordination of optimal sizing of energy storage systems and production buffer stocks in a net zero energy factory," Applied Energy, Elsevier, vol. 238(C), pages 851-862.
    3. Alizadeh, M.I. & Parsa Moghaddam, M. & Amjady, N. & Siano, P. & Sheikh-El-Eslami, M.K., 2016. "Flexibility in future power systems with high renewable penetration: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1186-1193.
    4. Ding, Yi & Shao, Changzheng & Yan, Jinyue & Song, Yonghua & Zhang, Chi & Guo, Chuangxin, 2018. "Economical flexibility options for integrating fluctuating wind energy in power systems: The case of China," Applied Energy, Elsevier, vol. 228(C), pages 426-436.
    5. Nistor, Silviu & Wu, Jianzhong & Sooriyabandara, Mahesh & Ekanayake, Janaka, 2015. "Capability of smart appliances to provide reserve services," Applied Energy, Elsevier, vol. 138(C), pages 590-597.
    6. Montuori, Lina & Alcázar-Ortega, Manuel & Álvarez-Bel, Carlos, 2021. "Methodology for the evaluation of demand response strategies for the management of natural gas systems," Energy, Elsevier, vol. 234(C).
    7. José Celso Contador & Walter Cardoso Satyro & Jose Luiz Contador & Mauro de Mesquita Spinola, 2020. "Flexibility in the Brazilian Industry 4.0: Challenges and Opportunities," Global Journal of Flexible Systems Management, Springer;Global Institute of Flexible Systems Management, vol. 21(1), pages 15-31, June.
    8. Rissman, Jeffrey & Bataille, Chris & Masanet, Eric & Aden, Nate & Morrow, William R. & Zhou, Nan & Elliott, Neal & Dell, Rebecca & Heeren, Niko & Huckestein, Brigitta & Cresko, Joe & Miller, Sabbie A., 2020. "Technologies and policies to decarbonize global industry: Review and assessment of mitigation drivers through 2070," Applied Energy, Elsevier, vol. 266(C).
    9. Lund, Peter D. & Lindgren, Juuso & Mikkola, Jani & Salpakari, Jyri, 2015. "Review of energy system flexibility measures to enable high levels of variable renewable electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 785-807.
    10. Hui, Hongxun & Ding, Yi & Liu, Weidong & Lin, You & Song, Yonghua, 2017. "Operating reserve evaluation of aggregated air conditioners," Applied Energy, Elsevier, vol. 196(C), pages 218-228.
    11. Wang, Yi & Cheng, Jiangnan & Zhang, Ning & Kang, Chongqing, 2018. "Automatic and linearized modeling of energy hub and its flexibility analysis," Applied Energy, Elsevier, vol. 211(C), pages 705-714.
    12. Wang, Jianxiao & Zhong, Haiwang & Ma, Ziming & Xia, Qing & Kang, Chongqing, 2017. "Review and prospect of integrated demand response in the multi-energy system," Applied Energy, Elsevier, vol. 202(C), pages 772-782.
    13. Guelpa, Elisa & Bischi, Aldo & Verda, Vittorio & Chertkov, Michael & Lund, Henrik, 2019. "Towards future infrastructures for sustainable multi-energy systems: A review," Energy, Elsevier, vol. 184(C), pages 2-21.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang, Sheng & Liu, Beilin & Li, Xiaolong & Liu, Zhiqiang & Liu, Yue & Xie, Nan & Ren, Jingzheng, 2023. "Flexibility index for a distributed energy system design optimization," Renewable Energy, Elsevier, vol. 219(P1).
    2. Bao, Minglei & Hui, Hengyu & Ding, Yi & Sun, Xiaocong & Zheng, Chenghang & Gao, Xiang, 2023. "An efficient framework for exploiting operational flexibility of load energy hubs in risk management of integrated electricity-gas systems," Applied Energy, Elsevier, vol. 338(C).
    3. Zhang, Shida & Ge, Shaoyun & Liu, Hong & Zhao, Bo & Ni, Chouwei & Hou, Guocheng & Wang, Chengshan, 2024. "Region-based flexibility quantification in distribution systems: An analytical approach considering spatio-temporal coupling," Applied Energy, Elsevier, vol. 355(C).
    4. Hui, Hengyu & Bao, Minglei & Ding, Yi & Yan, Jinyue & Song, Yonghua, 2023. "Probabilistic integrated flexible regions of multi-energy industrial parks: Conceptualization and characterization," Applied Energy, Elsevier, vol. 349(C).
    5. Zhang, Anan & Zheng, Yadi & Huang, Huang & Ding, Ning & Zhang, Chengqian, 2022. "Co-integration theory-based cluster time-varying load optimization control model of regional integrated energy system," Energy, Elsevier, vol. 260(C).
    6. Walter Cardoso Satyro & Jose Celso Contador & Sonia Francisca de Paula Monken & Anderson Ferreira de Lima & Gilberto Gomes Soares Junior & Jansen Anderson Gomes & João Victor Silva Neves & José Robert, 2023. "Industry 4.0 Implementation Projects: The Cleaner Production Strategy—A Literature Review," Sustainability, MDPI, vol. 15(3), pages 1-18, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tie, Yingqi & Hu, Bo & Shao, Changzheng & Huang, Wei & Qi, Feng & Xie, Kaigui, 2023. "Integrated flexibility characterization and measurement of distributed multi-energy systems considering temporal coupling constraints," Energy, Elsevier, vol. 283(C).
    2. Alabi, Tobi Michael & Aghimien, Emmanuel I. & Agbajor, Favour D. & Yang, Zaiyue & Lu, Lin & Adeoye, Adebusola R. & Gopaluni, Bhushan, 2022. "A review on the integrated optimization techniques and machine learning approaches for modeling, prediction, and decision making on integrated energy systems," Renewable Energy, Elsevier, vol. 194(C), pages 822-849.
    3. Dong, Zhe & Liu, Miao & Zhang, Zuoyi & Dong, Yujie & Huang, Xiaojin, 2019. "Automatic generation control for the flexible operation of multimodular high temperature gas-cooled reactor plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 11-31.
    4. Berjawi, A.E.H. & Walker, S.L. & Patsios, C. & Hosseini, S.H.R., 2021. "An evaluation framework for future integrated energy systems: A whole energy systems approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    5. Ramos-Teodoro, Jerónimo & Rodríguez, Francisco & Berenguel, Manuel & Torres, José Luis, 2018. "Heterogeneous resource management in energy hubs with self-consumption: Contributions and application example," Applied Energy, Elsevier, vol. 229(C), pages 537-550.
    6. Hui, Hongxun & Ding, Yi & Song, Yonghua & Rahman, Saifur, 2019. "Modeling and control of flexible loads for frequency regulation services considering compensation of communication latency and detection error," Applied Energy, Elsevier, vol. 250(C), pages 161-174.
    7. Xie, Kang & Hui, Hongxun & Ding, Yi & Song, Yonghua & Ye, Chengjin & Zheng, Wandong & Ye, Shuiquan, 2022. "Modeling and control of central air conditionings for providing regulation services for power systems," Applied Energy, Elsevier, vol. 315(C).
    8. Guelpa, Elisa & Verda, Vittorio, 2021. "Demand response and other demand side management techniques for district heating: A review," Energy, Elsevier, vol. 219(C).
    9. Heendeniya, Charitha Buddhika & Sumper, Andreas & Eicker, Ursula, 2020. "The multi-energy system co-planning of nearly zero-energy districts – Status-quo and future research potential," Applied Energy, Elsevier, vol. 267(C).
    10. Dong, Zhe & Li, Bowen & Li, Junyi & Guo, Zhiwu & Huang, Xiaojin & Zhang, Yajun & Zhang, Zuoyi, 2021. "Flexible control of nuclear cogeneration plants for balancing intermittent renewables," Energy, Elsevier, vol. 221(C).
    11. Yang, Sheng & Liu, Beilin & Li, Xiaolong & Liu, Zhiqiang & Liu, Yue & Xie, Nan & Ren, Jingzheng, 2023. "Flexibility index for a distributed energy system design optimization," Renewable Energy, Elsevier, vol. 219(P1).
    12. Fodstad, Marte & Crespo del Granado, Pedro & Hellemo, Lars & Knudsen, Brage Rugstad & Pisciella, Paolo & Silvast, Antti & Bordin, Chiara & Schmidt, Sarah & Straus, Julian, 2022. "Next frontiers in energy system modelling: A review on challenges and the state of the art," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    13. van Beuzekom, Iris & Hodge, Bri-Mathias & Slootweg, Han, 2021. "Framework for optimization of long-term, multi-period investment planning of integrated urban energy systems," Applied Energy, Elsevier, vol. 292(C).
    14. Hui, Hengyu & Bao, Minglei & Ding, Yi & Yan, Jinyue & Song, Yonghua, 2023. "Probabilistic integrated flexible regions of multi-energy industrial parks: Conceptualization and characterization," Applied Energy, Elsevier, vol. 349(C).
    15. Cheng, Yaohua & Zhang, Ning & Kirschen, Daniel S. & Huang, Wujing & Kang, Chongqing, 2020. "Planning multiple energy systems for low-carbon districts with high penetration of renewable energy: An empirical study in China," Applied Energy, Elsevier, vol. 261(C).
    16. Fridgen, Gilbert & Keller, Robert & Körner, Marc-Fabian & Schöpf, Michael, 2020. "A holistic view on sector coupling," Energy Policy, Elsevier, vol. 147(C).
    17. Zeng, Huibin & Shao, Bilin & Dai, Hongbin & Yan, Yichuan & Tian, Ning, 2023. "Natural gas demand response strategy considering user satisfaction and load volatility under dynamic pricing," Energy, Elsevier, vol. 277(C).
    18. Jolando M. Kisse & Martin Braun & Simon Letzgus & Tanja M. Kneiske, 2020. "A GIS-Based Planning Approach for Urban Power and Natural Gas Distribution Grids with Different Heat Pump Scenarios," Energies, MDPI, vol. 13(16), pages 1-31, August.
    19. Mittelviefhaus, Moritz & Pareschi, Giacomo & Allan, James & Georges, Gil & Boulouchos, Konstantinos, 2021. "Optimal investment and scheduling of residential multi-energy systems including electric mobility: A cost-effective approach to climate change mitigation," Applied Energy, Elsevier, vol. 301(C).
    20. Matthew Gough & Sérgio F. Santos & Mohammed Javadi & Rui Castro & João P. S. Catalão, 2020. "Prosumer Flexibility: A Comprehensive State-of-the-Art Review and Scientometric Analysis," Energies, MDPI, vol. 13(11), pages 1-32, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:311:y:2022:i:c:s030626192200071x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.