IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i23p8889-d983077.html
   My bibliography  Save this article

Modernized Planning of Smart Grid Based on Distributed Power Generations and Energy Storage Systems Using Soft Computing Methods

Author

Listed:
  • Arul Rajagopalan

    (School of Electrical Engineering, Vellore Institute of Technology, Chennai 600127, Tamil Nadu, India)

  • Dhivya Swaminathan

    (School of Electrical Engineering, Vellore Institute of Technology, Chennai 600127, Tamil Nadu, India)

  • Meshal Alharbi

    (Department of Computer Science, College of Computer Engineering and Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia)

  • Sudhakar Sengan

    (Department of Computer Science and Engineering, PSN College of Engineering and Technology, Tirunelveli 627152, Tamil Nadu, India)

  • Oscar Danilo Montoya

    (Grupo de Compatibilidad e Interferencia Electromagnética (GCEM), Facultad de Ingeniería, Universidad Distrital Francisco José de Caldas, Bogotá 110231, Colombia
    Laboratorio Inteligente de Energía, Universidad Tecnológica de Bolívar, Cartagena 131001, Colombia)

  • Walid El-Shafai

    (Security Engineering Lab, Computer Science Department, Prince Sultan University, Riyadh 11586, Saudi Arabia
    Department of Electronics and Electrical Communications Engineering, Faculty of Electronic Engineering, Menoufia University, Menouf 32952, Egypt)

  • Mostafa M. Fouda

    (Department of Electrical and Computer Engineering, College of Science and Engineering, Idaho State University, Pocatello, ID 83209, USA)

  • Moustafa H. Aly

    (Electronics and Communications Engineering Department, College of Engineering and Technology, Arab Academy for Science, Technology and Maritime Transport, Alexandria P.O. Box 1029, Egypt)

Abstract

The modest objective is to check the integrated effect of energy storage systems (ESSs) and distributed generations (DGs) and compare the optimization of the size and location of ESS and DG to explore its challenges for smart grids (SGs) modernization. The research enlisted different algorithms for cost-effectiveness, security, voltage control, and less power losses. From this perspective, optimization of the distribution network’s energy storage and capacity are being performed using a variety of methods, including the particle swarm, ant-lion optimization, genetic, and flower pollination algorithms. The experimental outcomes demonstrate the effectiveness of these techniques in lowering distribution network operating costs and controlling system load fluctuations. The efficiency and dependability of the distribution network (DN) are both maximized by these strategies.

Suggested Citation

  • Arul Rajagopalan & Dhivya Swaminathan & Meshal Alharbi & Sudhakar Sengan & Oscar Danilo Montoya & Walid El-Shafai & Mostafa M. Fouda & Moustafa H. Aly, 2022. "Modernized Planning of Smart Grid Based on Distributed Power Generations and Energy Storage Systems Using Soft Computing Methods," Energies, MDPI, vol. 15(23), pages 1-18, November.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:23:p:8889-:d:983077
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/23/8889/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/23/8889/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Guedes, Kevin S. & de Andrade, Carla F. & Rocha, Paulo A.C. & Mangueira, Rivanilso dos S. & de Moura, Elineudo P., 2020. "Performance analysis of metaheuristic optimization algorithms in estimating the parameters of several wind speed distributions," Applied Energy, Elsevier, vol. 268(C).
    2. Bucciarelli, Martina & Paoletti, Simone & Vicino, Antonio, 2018. "Optimal sizing of energy storage systems under uncertain demand and generation," Applied Energy, Elsevier, vol. 225(C), pages 611-621.
    3. Bozorgavari, Seyed Aboozar & Aghaei, Jamshid & Pirouzi, Sasan & Nikoobakht, Ahmad & Farahmand, Hossein & Korpås, Magnus, 2020. "Robust planning of distributed battery energy storage systems in flexible smart distribution networks: A comprehensive study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 123(C).
    4. Vasiliki Vita, 2017. "Development of a Decision-Making Algorithm for the Optimum Size and Placement of Distributed Generation Units in Distribution Networks," Energies, MDPI, vol. 10(9), pages 1-13, September.
    5. Wang, Yi & Zhang, Ning & Zhuo, Zhenyu & Kang, Chongqing & Kirschen, Daniel, 2018. "Mixed-integer linear programming-based optimal configuration planning for energy hub: Starting from scratch," Applied Energy, Elsevier, vol. 210(C), pages 1141-1150.
    6. Sedghi, Mahdi & Ahmadian, Ali & Aliakbar-Golkar, Masoud, 2016. "Assessment of optimization algorithms capability in distribution network planning: Review, comparison and modification techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 415-434.
    7. Miquel Escoto & Mario Montagud & Noemi González & Alejandro Belinchón & Adriana Valentina Trujillo & Julián Romero & Julio César Díaz-Cabrera & Marta Pellicer García & Alfredo Quijano López, 2020. "Optimal Scheduling for Energy Storage Systems in Distribution Networks," Energies, MDPI, vol. 13(15), pages 1-12, July.
    8. Ji, Haoran & Wang, Chengshan & Li, Peng & Song, Guanyu & Yu, Hao & Wu, Jianzhong, 2019. "Quantified analysis method for operational flexibility of active distribution networks with high penetration of distributed generators," Applied Energy, Elsevier, vol. 239(C), pages 706-714.
    9. Valeri Mladenov & Vesselin Chobanov & George Calin Seritan & Radu Florin Porumb & Bogdan-Adrian Enache & Vasiliki Vita & Marilena Stănculescu & Thong Vu Van & Dimitrios Bargiotas, 2022. "A Flexibility Market Platform for Electricity System Operators Using Blockchain Technology," Energies, MDPI, vol. 15(2), pages 1-26, January.
    10. Arandian, B. & Ardehali, M.M., 2017. "Effects of environmental emissions on optimal combination and allocation of renewable and non-renewable CHP technologies in heat and electricity distribution networks based on improved particle swarm ," Energy, Elsevier, vol. 140(P1), pages 466-480.
    11. Xie, Shiwei & Hu, Zhijian & Zhou, Daming & Li, Yan & Kong, Shunfei & Lin, Weiwei & Zheng, Yunfei, 2018. "Multi-objective active distribution networks expansion planning by scenario-based stochastic programming considering uncertain and random weight of network," Applied Energy, Elsevier, vol. 219(C), pages 207-225.
    12. Yue Zhang & Anurag Srivastava, 2021. "Voltage Control Strategy for Energy Storage System in Sustainable Distribution System Operation," Energies, MDPI, vol. 14(4), pages 1-12, February.
    13. Mahdavi, Sajad & Hemmati, Reza & Jirdehi, Mehdi Ahmadi, 2018. "Two-level planning for coordination of energy storage systems and wind-solar-diesel units in active distribution networks," Energy, Elsevier, vol. 151(C), pages 954-965.
    14. Pereira, Sérgio & Ferreira, Paula & Vaz, A.I.F., 2017. "Generation expansion planning with high share of renewables of variable output," Applied Energy, Elsevier, vol. 190(C), pages 1275-1288.
    15. Amrutha Raju Battula & Sandeep Vuddanti & Surender Reddy Salkuti, 2021. "Review of Energy Management System Approaches in Microgrids," Energies, MDPI, vol. 14(17), pages 1-32, September.
    16. Tomasz Sikorski & Michal Jasiński & Edyta Ropuszyńska-Surma & Magdalena Węglarz & Dominika Kaczorowska & Paweł Kostyla & Zbigniew Leonowicz & Robert Lis & Jacek Rezmer & Wilhelm Rojewski & Marian Sobi, 2020. "A Case Study on Distributed Energy Resources and Energy-Storage Systems in a Virtual Power Plant Concept: Technical Aspects," Energies, MDPI, vol. 13(12), pages 1-30, June.
    17. Yoldaş, Yeliz & Önen, Ahmet & Muyeen, S.M. & Vasilakos, Athanasios V. & Alan, İrfan, 2017. "Enhancing smart grid with microgrids: Challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 205-214.
    18. Ahmadigorji, Masoud & Amjady, Nima, 2016. "A multiyear DG-incorporated framework for expansion planning of distribution networks using binary chaotic shark smell optimization algorithm," Energy, Elsevier, vol. 102(C), pages 199-215.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Faris E. Alfaris & Faris Almutairi, 2024. "Performance Assessment User Interface to Enhance the Utilization of Grid-Connected Residential PV Systems," Sustainability, MDPI, vol. 16(5), pages 1-26, February.
    2. Ziqi Liu & Tingting Su & Zhiying Quan & Quanli Wu & Yu Wang, 2023. "Review on the Optimal Configuration of Distributed Energy Storage," Energies, MDPI, vol. 16(14), pages 1-17, July.
    3. Mahmoud M. Badr & Mohamed I. Ibrahem & Hisham A. Kholidy & Mostafa M. Fouda & Muhammad Ismail, 2023. "Review of the Data-Driven Methods for Electricity Fraud Detection in Smart Metering Systems," Energies, MDPI, vol. 16(6), pages 1-18, March.
    4. Wallisson C. Nogueira & Lina P. Garcés Negrete & Jesús M. López-Lezama, 2023. "Optimal Allocation and Sizing of Distributed Generation Using Interval Power Flow," Sustainability, MDPI, vol. 15(6), pages 1-24, March.
    5. Dhivya Swaminathan & Arul Rajagopalan & Oscar Danilo Montoya & Savitha Arul & Luis Fernando Grisales-Noreña, 2023. "Distribution Network Reconfiguration Based on Hybrid Golden Flower Algorithm for Smart Cities Evolution," Energies, MDPI, vol. 16(5), pages 1-24, March.
    6. Rasheed Abdulkader & Hayder M. A. Ghanimi & Pankaj Dadheech & Meshal Alharbi & Walid El-Shafai & Mostafa M. Fouda & Moustafa H. Aly & Dhivya Swaminathan & Sudhakar Sengan, 2023. "Soft Computing in Smart Grid with Decentralized Generation and Renewable Energy Storage System Planning," Energies, MDPI, vol. 16(6), pages 1-24, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rasheed Abdulkader & Hayder M. A. Ghanimi & Pankaj Dadheech & Meshal Alharbi & Walid El-Shafai & Mostafa M. Fouda & Moustafa H. Aly & Dhivya Swaminathan & Sudhakar Sengan, 2023. "Soft Computing in Smart Grid with Decentralized Generation and Renewable Energy Storage System Planning," Energies, MDPI, vol. 16(6), pages 1-24, March.
    2. Xie, Shiwei & Hu, Zhijian & Wang, Jueying & Chen, Yuwei, 2020. "The optimal planning of smart multi-energy systems incorporating transportation, natural gas and active distribution networks," Applied Energy, Elsevier, vol. 269(C).
    3. Habiba Drias & Lydia Sonia Bendimerad & Yassine Drias, 2022. "A Three-Phase Artificial Orcas Algorithm for Continuous and Discrete Problems," International Journal of Applied Metaheuristic Computing (IJAMC), IGI Global, vol. 13(1), pages 1-20, January.
    4. Xie, Shiwei & Zheng, Jieyun & Hu, Zhijian & Wang, Jueying & Chen, Yuwei, 2020. "Urban multi-energy network optimization: An enhanced model using a two-stage bound-tightening approach," Applied Energy, Elsevier, vol. 277(C).
    5. José Luis Ruiz Duarte & Neng Fan, 2022. "Operation of a Power Grid with Embedded Networked Microgrids and Onsite Renewable Technologies," Energies, MDPI, vol. 15(7), pages 1-24, March.
    6. Stavros Lazarou & Vasiliki Vita & Lambros Ekonomou, 2018. "Protection Schemes of Meshed Distribution Networks for Smart Grids and Electric Vehicles," Energies, MDPI, vol. 11(11), pages 1-17, November.
    7. Syed Ali Abbas Kazmi & Abdul Kashif Janjua & Dong Ryeol Shin, 2018. "Enhanced Voltage Stability Assessment Index Based Planning Approach for Mesh Distribution Systems," Energies, MDPI, vol. 11(5), pages 1-36, May.
    8. Xiang, Yue & Dai, Jiakun & Xue, Ping & Liu, Junyong, 2023. "Autonomous topology planning for distribution network expansion: A learning-based decoupled optimization method," Applied Energy, Elsevier, vol. 348(C).
    9. Hannan, M.A. & Faisal, M. & Jern Ker, Pin & Begum, R.A. & Dong, Z.Y. & Zhang, C., 2020. "Review of optimal methods and algorithms for sizing energy storage systems to achieve decarbonization in microgrid applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    10. Zhou, Yulu & Zhang, Jingrui, 2020. "Three-layer day-ahead scheduling for active distribution network by considering multiple stakeholders," Energy, Elsevier, vol. 207(C).
    11. Tabar, Vahid Sohrabi & Banazadeh, Hamidreza & Tostado-Véliz, Marcos & Jordehi, Ahmad Rezaee & Nasir, Mohammad & Jurado, Francisco, 2022. "Stochastic multi-stage multi-objective expansion of renewable resources and electrical energy storage units in distribution systems considering crypto-currency miners and responsive loads," Renewable Energy, Elsevier, vol. 198(C), pages 1131-1147.
    12. Koecklin, Manuel Tong & Longoria, Genaro & Fitiwi, Desta Z. & DeCarolis, Joseph F. & Curtis, John, 2021. "Public acceptance of renewable electricity generation and transmission network developments: Insights from Ireland," Energy Policy, Elsevier, vol. 151(C).
    13. Jurasz, Jakub & Beluco, Alexandre & Canales, Fausto A., 2018. "The impact of complementarity on power supply reliability of small scale hybrid energy systems," Energy, Elsevier, vol. 161(C), pages 737-743.
    14. Zhang, Huaiyuan & Liao, Kai & Yang, Jianwei & Zheng, Shunwei & He, Zhengyou, 2024. "Frequency-constrained expansion planning for wind and photovoltaic power in wind-photovoltaic-hydro-thermal multi-power system," Applied Energy, Elsevier, vol. 356(C).
    15. Li, Peng & Ji, Haoran & Yu, Hao & Zhao, Jinli & Wang, Chengshan & Song, Guanyu & Wu, Jianzhong, 2019. "Combined decentralized and local voltage control strategy of soft open points in active distribution networks," Applied Energy, Elsevier, vol. 241(C), pages 613-624.
    16. Jingjing Tu & Zhongdong Yin & Yonghai Xu, 2018. "Study on the Evaluation Index System and Evaluation Method of Voltage Stability of Distribution Network with High DG Penetration," Energies, MDPI, vol. 11(1), pages 1-15, January.
    17. Vrionis, Constantinos & Tsalavoutis, Vasilios & Tolis, Athanasios, 2020. "A Generation Expansion Planning model for integrating high shares of renewable energy: A Meta-Model Assisted Evolutionary Algorithm approach," Applied Energy, Elsevier, vol. 259(C).
    18. Hamza Mubarak & Nurulafiqah Nadzirah Mansor & Hazlie Mokhlis & Mahazani Mohamad & Hasmaini Mohamad & Munir Azam Muhammad & Mohammad Al Samman & Suhail Afzal, 2021. "Optimum Distribution System Expansion Planning Incorporating DG Based on N-1 Criterion for Sustainable System," Sustainability, MDPI, vol. 13(12), pages 1-24, June.
    19. A. J. Jin & C. Li & J. Su & J. Tan, 2022. "Fundamental Studies of Smart Distributed Energy Resources along with Energy Blockchain," Energies, MDPI, vol. 15(21), pages 1-12, October.
    20. Cheng, Yaohua & Zhang, Ning & Kirschen, Daniel S. & Huang, Wujing & Kang, Chongqing, 2020. "Planning multiple energy systems for low-carbon districts with high penetration of renewable energy: An empirical study in China," Applied Energy, Elsevier, vol. 261(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:23:p:8889-:d:983077. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.