IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i21p4172-d282514.html
   My bibliography  Save this article

Optimal Network Reconfiguration in Active Distribution Networks with Soft Open Points and Distributed Generation

Author

Listed:
  • Ibrahim Diaaeldin

    (Engineering Physics and Mathematics Department, Ain Shams University, Cairo 11517, Egypt)

  • Shady Abdel Aleem

    (Mathematical, Physical and Engineering Sciences Department, 15th of May Higher Institute of Engineering, Cairo 11731, Egypt)

  • Ahmed El-Rafei

    (Engineering Physics and Mathematics Department, Ain Shams University, Cairo 11517, Egypt)

  • Almoataz Abdelaziz

    (Faculty of Engineering and Technology, Future University in Egypt, Cairo 11835, Egypt)

  • Ahmed F. Zobaa

    (Electronic and Computer Engineering Department, Brunel University London, Uxbridge UB8 3PH, UK)

Abstract

In this study, we allocated soft open points (SOPs) and distributed generation (DG) units simultaneously with and without network reconfiguration (NR), and investigate the contribution of SOP losses to the total active losses, as well as the effect of increasing the number of SOPs connected to distribution systems under different loading conditions. A recent meta-heuristic optimization algorithm called the discrete-continuous hyper-spherical search algorithm is used to solve the mixed-integer nonlinear problem of SOPs and DGs allocation, along with new NR methodology to obtain radial configurations in an efficient manner without the possibility of getting trapped in local minima. Further, multi-scenario studies are conducted on an IEEE 33-node balanced benchmark distribution system and an 83-node balanced distribution system from a power company in Taiwan. The contributions of SOP losses to the total active losses, as well as the effect of increasing the number of SOPs connected to the system, are investigated to determine the real benefits gained from their allocation. It was clear from the results obtained that simultaneous NR, SOP, and DG allocation into a distribution system creates a hybrid configuration that merges the benefits offered by radial distribution systems and mitigates drawbacks related to losses, power quality, and voltage violations, while offering a far more efficient and optimal network operation. Also, it was found that the contribution of the internal loss of SOPs to the total loss for different numbers of installed SOPs is not dependent on the number of SOPs and that loss minimization is not always guaranteed by installing more SOPs or DGs along with NR. One of the findings of the paper demonstrates that NR with optimizing tie-lines could reduce active losses considerably. The results obtained also validate, with proper justifications, that SOPs installed for the management of constraints in LV feeders could further reduce losses and efficiently address issues related to voltage violations and network losses.

Suggested Citation

  • Ibrahim Diaaeldin & Shady Abdel Aleem & Ahmed El-Rafei & Almoataz Abdelaziz & Ahmed F. Zobaa, 2019. "Optimal Network Reconfiguration in Active Distribution Networks with Soft Open Points and Distributed Generation," Energies, MDPI, vol. 12(21), pages 1-31, November.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:21:p:4172-:d:282514
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/21/4172/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/21/4172/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Long, Chao & Wu, Jianzhong & Thomas, Lee & Jenkins, Nick, 2016. "Optimal operation of soft open points in medium voltage electrical distribution networks with distributed generation," Applied Energy, Elsevier, vol. 184(C), pages 427-437.
    2. Ji, Haoran & Wang, Chengshan & Li, Peng & Song, Guanyu & Wu, Jianzhong, 2018. "SOP-based islanding partition method of active distribution networks considering the characteristics of DG, energy storage system and load," Energy, Elsevier, vol. 155(C), pages 312-325.
    3. Gianfranco Chicco & Andrea Mazza, 2019. "100 Years of Symmetrical Components," Energies, MDPI, vol. 12(3), pages 1-20, January.
    4. Cao, Wanyu & Wu, Jianzhong & Jenkins, Nick & Wang, Chengshan & Green, Timothy, 2016. "Operating principle of Soft Open Points for electrical distribution network operation," Applied Energy, Elsevier, vol. 164(C), pages 245-257.
    5. Bai, Linquan & Jiang, Tao & Li, Fangxing & Chen, Houhe & Li, Xue, 2018. "Distributed energy storage planning in soft open point based active distribution networks incorporating network reconfiguration and DG reactive power capability," Applied Energy, Elsevier, vol. 210(C), pages 1082-1091.
    6. Badran, Ola & Mekhilef, Saad & Mokhlis, Hazlie & Dahalan, Wardiah, 2017. "Optimal reconfiguration of distribution system connected with distributed generations: A review of different methodologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 854-867.
    7. Aithal, Avinash & Li, Gen & Wu, Jianzhong & Yu, James, 2018. "Performance of an electrical distribution network with Soft Open Point during a grid side AC fault," Applied Energy, Elsevier, vol. 227(C), pages 262-272.
    8. Li, Peng & Ji, Haoran & Yu, Hao & Zhao, Jinli & Wang, Chengshan & Song, Guanyu & Wu, Jianzhong, 2019. "Combined decentralized and local voltage control strategy of soft open points in active distribution networks," Applied Energy, Elsevier, vol. 241(C), pages 613-624.
    9. Sherif M. Ismael & Shady H. E. Abdel Aleem & Almoataz Y. Abdelaziz & Ahmed F. Zobaa, 2019. "Probabilistic Hosting Capacity Enhancement in Non-Sinusoidal Power Distribution Systems Using a Hybrid PSOGSA Optimization Algorithm," Energies, MDPI, vol. 12(6), pages 1-23, March.
    10. Wang, Chengshan & Song, Guanyu & Li, Peng & Ji, Haoran & Zhao, Jinli & Wu, Jianzhong, 2017. "Optimal siting and sizing of soft open points in active electrical distribution networks," Applied Energy, Elsevier, vol. 189(C), pages 301-309.
    11. Cao, Wanyu & Wu, Jianzhong & Jenkins, Nick & Wang, Chengshan & Green, Timothy, 2016. "Benefits analysis of Soft Open Points for electrical distribution network operation," Applied Energy, Elsevier, vol. 165(C), pages 36-47.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Saman Shahrokhi & Adel El-Shahat & Fatemeh Masoudinia & Foad H. Gandoman & Shady H. E. Abdel Aleem, 2021. "Sizing and Energy Management of Parking Lots of Electric Vehicles Based on Battery Storage with Wind Resources in Distribution Network," Energies, MDPI, vol. 14(20), pages 1-21, October.
    2. Chaminda Bandara, W.G. & Godaliyadda, G.M.R.I. & Ekanayake, M.P.B. & Ekanayake, J.B., 2020. "Coordinated photovoltaic re-phasing: A novel method to maximize renewable energy integration in low voltage networks by mitigating network unbalances," Applied Energy, Elsevier, vol. 280(C).
    3. Subrat Kumar Dash & Sivkumar Mishra & Almoataz Y. Abdelaziz & Mamdouh L. Alghaythi & Ahmed Allehyani, 2022. "Optimal Allocation of Distributed Generators in Active Distribution Networks Using a New Oppositional Hybrid Sine Cosine Muted Differential Evolution Algorithm," Energies, MDPI, vol. 15(6), pages 1-35, March.
    4. Ibrahim Mohamed Diaaeldin & Shady H. E. Abdel Aleem & Ahmed El-Rafei & Almoataz Y. Abdelaziz & Ahmed F. Zobaa, 2020. "Enhancement of Hosting Capacity with Soft Open Points and Distribution System Reconfiguration: Multi-Objective Bilevel Stochastic Optimization," Energies, MDPI, vol. 13(20), pages 1-20, October.
    5. Xin Yan & Qian Zhang, 2023. "Research on Combination of Distributed Generation Placement and Dynamic Distribution Network Reconfiguration Based on MIBWOA," Sustainability, MDPI, vol. 15(12), pages 1-34, June.
    6. Ibrahim Mohamed Diaaeldin & Shady H. E. Abdel Aleem & Ahmed El-Rafei & Almoataz Y. Abdelaziz & Ahmed F. Zobaa, 2019. "A Novel Graphically-Based Network Reconfiguration for Power Loss Minimization in Large Distribution Systems," Mathematics, MDPI, vol. 7(12), pages 1-17, December.
    7. Bastami, Houman & Shakarami, Mahmoud Reza & Doostizadeh, Meysam, 2021. "A decentralized cooperative framework for multi-area active distribution network in presence of inter-area soft open points," Applied Energy, Elsevier, vol. 300(C).
    8. Mohamed Abd-El-Hakeem Mohamed & Ziad M. Ali & Mahrous Ahmed & Saad F. Al-Gahtani, 2021. "Energy Saving Maximization of Balanced and Unbalanced Distribution Power Systems via Network Reconfiguration and Optimum Capacitor Allocation Using a Hybrid Metaheuristic Algorithm," Energies, MDPI, vol. 14(11), pages 1-24, May.
    9. Irina I. Picioroaga & Andrei M. Tudose & Dorian O. Sidea & Constantin Bulac, 2022. "Supply Restoration in Active Distribution Networks Based on Soft Open Points with Embedded DC Microgrids," Mathematics, MDPI, vol. 10(2), pages 1-21, January.
    10. Shahid Nawaz Khan & Syed Ali Abbas Kazmi & Abdullah Altamimi & Zafar A. Khan & Mohammed A. Alghassab, 2022. "Smart Distribution Mechanisms—Part I: From the Perspectives of Planning," Sustainability, MDPI, vol. 14(23), pages 1-109, December.
    11. Thangaraj Yuvaraj & Kaliaperumal Rukmani Devabalaji & Natarajan Prabaharan & Hassan Haes Alhelou & Asokkumar Manju & Poushali Pal & Pierluigi Siano, 2021. "Optimal Integration of Capacitor and Distributed Generation in Distribution System Considering Load Variation Using Bat Optimization Algorithm," Energies, MDPI, vol. 14(12), pages 1-24, June.
    12. Ruonan Hu & Wei Wang & Zhe Chen & Xuezhi Wu & Long Jing & Wei Ma & Guohong Zeng, 2020. "Coordinated Voltage Regulation Methods in Active Distribution Networks with Soft Open Points," Sustainability, MDPI, vol. 12(22), pages 1-18, November.
    13. Shamam Alwash & Sarmad Ibrahim & Azher M. Abed, 2022. "Distribution System Reconfiguration with Soft Open Point for Power Loss Reduction in Distribution Systems Based on Hybrid Water Cycle Algorithm," Energies, MDPI, vol. 16(1), pages 1-22, December.
    14. Ziad M. Ali & Ibrahim Mohamed Diaaeldin & Shady H. E. Abdel Aleem & Ahmed El-Rafei & Almoataz Y. Abdelaziz & Francisco Jurado, 2020. "Scenario-Based Network Reconfiguration and Renewable Energy Resources Integration in Large-Scale Distribution Systems Considering Parameters Uncertainty," Mathematics, MDPI, vol. 9(1), pages 1-31, December.
    15. Min Zhu & Saber Arabi Nowdeh & Aspassia Daskalopulu, 2023. "An Improved Human-Inspired Algorithm for Distribution Network Stochastic Reconfiguration Using a Multi-Objective Intelligent Framework and Unscented Transformation," Mathematics, MDPI, vol. 11(17), pages 1-23, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bastami, Houman & Shakarami, Mahmoud Reza & Doostizadeh, Meysam, 2021. "A decentralized cooperative framework for multi-area active distribution network in presence of inter-area soft open points," Applied Energy, Elsevier, vol. 300(C).
    2. Li, Peng & Ji, Haoran & Yu, Hao & Zhao, Jinli & Wang, Chengshan & Song, Guanyu & Wu, Jianzhong, 2019. "Combined decentralized and local voltage control strategy of soft open points in active distribution networks," Applied Energy, Elsevier, vol. 241(C), pages 613-624.
    3. Deakin, Matthew & Sarantakos, Ilias & Greenwood, David & Bialek, Janusz & Taylor, Phil C. & Walker, Sara, 2023. "Comparative analysis of services from soft open points using cost–benefit analysis," Applied Energy, Elsevier, vol. 333(C).
    4. Ruonan Hu & Wei Wang & Zhe Chen & Xuezhi Wu & Long Jing & Wei Ma & Guohong Zeng, 2020. "Coordinated Voltage Regulation Methods in Active Distribution Networks with Soft Open Points," Sustainability, MDPI, vol. 12(22), pages 1-18, November.
    5. Ji, Haoran & Wang, Chengshan & Li, Peng & Song, Guanyu & Wu, Jianzhong, 2018. "SOP-based islanding partition method of active distribution networks considering the characteristics of DG, energy storage system and load," Energy, Elsevier, vol. 155(C), pages 312-325.
    6. Irina I. Picioroaga & Andrei M. Tudose & Dorian O. Sidea & Constantin Bulac, 2022. "Supply Restoration in Active Distribution Networks Based on Soft Open Points with Embedded DC Microgrids," Mathematics, MDPI, vol. 10(2), pages 1-21, January.
    7. Li, Peng & Ji, Jie & Ji, Haoran & Song, Guanyu & Wang, Chengshan & Wu, Jianzhong, 2020. "Self-healing oriented supply restoration method based on the coordination of multiple SOPs in active distribution networks," Energy, Elsevier, vol. 195(C).
    8. Bai, Linquan & Jiang, Tao & Li, Fangxing & Chen, Houhe & Li, Xue, 2018. "Distributed energy storage planning in soft open point based active distribution networks incorporating network reconfiguration and DG reactive power capability," Applied Energy, Elsevier, vol. 210(C), pages 1082-1091.
    9. Ji, Haoran & Wang, Chengshan & Li, Peng & Zhao, Jinli & Song, Guanyu & Wu, Jianzhong, 2018. "Quantified flexibility evaluation of soft open points to improve distributed generator penetration in active distribution networks based on difference-of-convex programming," Applied Energy, Elsevier, vol. 218(C), pages 338-348.
    10. Aithal, Avinash & Li, Gen & Wu, Jianzhong & Yu, James, 2018. "Performance of an electrical distribution network with Soft Open Point during a grid side AC fault," Applied Energy, Elsevier, vol. 227(C), pages 262-272.
    11. Eshan Karunarathne & Jagadeesh Pasupuleti & Janaka Ekanayake & Dilini Almeida, 2021. "The Optimal Placement and Sizing of Distributed Generation in an Active Distribution Network with Several Soft Open Points," Energies, MDPI, vol. 14(4), pages 1-20, February.
    12. Escalera, Alberto & Prodanović, Milan & Castronuovo, Edgardo D. & Roldan-Perez, Javier, 2020. "Contribution of active management technologies to the reliability of power distribution networks," Applied Energy, Elsevier, vol. 267(C).
    13. Ji, Haoran & Wang, Chengshan & Li, Peng & Zhao, Jinli & Song, Guanyu & Ding, Fei & Wu, Jianzhong, 2017. "An enhanced SOCP-based method for feeder load balancing using the multi-terminal soft open point in active distribution networks," Applied Energy, Elsevier, vol. 208(C), pages 986-995.
    14. Qi, Qi & Wu, Jianzhong & Long, Chao, 2017. "Multi-objective operation optimization of an electrical distribution network with soft open point," Applied Energy, Elsevier, vol. 208(C), pages 734-744.
    15. Wu, Pan & Huang, Wentao & Tai, Nengling & Liang, Shuo, 2018. "A novel design of architecture and control for multiple microgrids with hybrid AC/DC connection," Applied Energy, Elsevier, vol. 210(C), pages 1002-1016.
    16. Zhang, Lu & Shen, Chen & Chen, Ying & Huang, Shaowei & Tang, Wei, 2018. "Coordinated allocation of distributed generation, capacitor banks and soft open points in active distribution networks considering dispatching results," Applied Energy, Elsevier, vol. 231(C), pages 1122-1131.
    17. Wang, Chengshan & Song, Guanyu & Li, Peng & Ji, Haoran & Zhao, Jinli & Wu, Jianzhong, 2017. "Optimal siting and sizing of soft open points in active electrical distribution networks," Applied Energy, Elsevier, vol. 189(C), pages 301-309.
    18. Ji, Haoran & Wang, Chengshan & Li, Peng & Song, Guanyu & Yu, Hao & Wu, Jianzhong, 2019. "Quantified analysis method for operational flexibility of active distribution networks with high penetration of distributed generators," Applied Energy, Elsevier, vol. 239(C), pages 706-714.
    19. Husam A. Ramadan & Spyros Skarvelis-Kazakos, 2022. "DC Soft Open Points for Resilient and Reconfigurable DC Distribution Networks," Energies, MDPI, vol. 15(16), pages 1-23, August.
    20. Hongtao Li & Zijin Li & Bo Wang & Kai Sun, 2024. "Stochastic Optimal Operation of SOP-Assisted Active Distribution Networks with High Penetration of Renewable Energy Sources," Sustainability, MDPI, vol. 16(13), pages 1-14, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:21:p:4172-:d:282514. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.