IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v353y2024ipbs0306261923015453.html
   My bibliography  Save this article

Flexibility enhancement of multi-district DISCOs considering a trade-off between congestion and extractable reserve capacity from virtual energy storage systems

Author

Listed:
  • Zare Oskouei, Morteza
  • Gharehpetian, Gevork B.

Abstract

One of the fundamental concerns of distribution companies (DISCOs) is how to satisfy security requirements under uncertain conditions and real-time contingencies. To address this concern, it is vital to employ operational flexibility levers aimed at mitigating congestion and retaining optimal reserve capacity, particularly in critical feeders. Increased interaction between DISCOs and virtual energy storage systems (VESSs) offers an unparalleled opportunity to unlock the energy flexibility of distribution grids at the local level without increasing operational complexity. According to the state-of-the-art, models that tap the economic performance of VESSs while respecting the flexibility and security setpoints adopted by DISCOs in a distributed manner have remained scarce. This study goes beyond by developing a flexibility-oriented decision-making strategy as a single-leader multi-followers stochastic model; in which a multi-district DISCO involves the flexibility setpoints and congestion management strategy in the market participation plan of each VESS locally to enhance the energy flexibility of each district. In the upper level, DISCO aims to deal with stressful situations in real-time sessions by (i) determining the minimum reserve capacity requirements in each district to be provided by VESSs with respect to the existing uncertainty sources and the importance of each district, and (ii) alleviating the congestion in critical feeders to release the feeder capacity for deployment of the available reserve power promptly. In the lower level, each VESS makes optimal decisions on power and reserve bidding in day-ahead, reserve, and real-time markets that are affected by the flexibility services required by the DISCO. Inspired by the activity schedule of different users, it also examines how demand response programs can affect DISCO’s ability to unlock consumer-side flexibility in realizing congestion management strategies. The developed bi-level scheduling model is first reformulated as single-level mathematical program with equilibrium constraints (MPEC) by employing Karush–Kuhn–Tucker (KKT) optimality conditions and then linearized into a mixed-integer linear program (MILP). The proposed strategy is validated through extensive simulations conducted on the modified IEEE 33-bus test system consisting of three districts with different users. Furthermore, DIgSILENT PowerFactory is used to verify the feasibility of the proposed model under contingency cases and to provide insights for DISCOs to control multiple VESSs and capacity-correlated uncertainties.

Suggested Citation

  • Zare Oskouei, Morteza & Gharehpetian, Gevork B., 2024. "Flexibility enhancement of multi-district DISCOs considering a trade-off between congestion and extractable reserve capacity from virtual energy storage systems," Applied Energy, Elsevier, vol. 353(PB).
  • Handle: RePEc:eee:appene:v:353:y:2024:i:pb:s0306261923015453
    DOI: 10.1016/j.apenergy.2023.122181
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923015453
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.122181?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ji, Haoran & Wang, Chengshan & Li, Peng & Song, Guanyu & Yu, Hao & Wu, Jianzhong, 2019. "Quantified analysis method for operational flexibility of active distribution networks with high penetration of distributed generators," Applied Energy, Elsevier, vol. 239(C), pages 706-714.
    2. Zare Oskouei, Morteza & Mehrjerdi, Hasan & Babazadeh, Davood & Teimourzadeh Baboli, Payam & Becker, Christian & Palensky, Peter, 2022. "Resilience-oriented operation of power systems: Hierarchical partitioning-based approach," Applied Energy, Elsevier, vol. 312(C).
    3. Aghdam, Farid Hamzeh & Mudiyanselage, Manthila Wijesooriya & Mohammadi-Ivatloo, Behnam & Marzband, Mousa, 2023. "Optimal scheduling of multi-energy type virtual energy storage system in reconfigurable distribution networks for congestion management," Applied Energy, Elsevier, vol. 333(C).
    4. Zakernezhad, Hamid & Setayesh Nazar, Mehrdad & Shafie-khah, Miadreza & Catalão, João P.S., 2022. "Optimal scheduling of an active distribution system considering distributed energy resources, demand response aggregators and electrical energy storage," Applied Energy, Elsevier, vol. 314(C).
    5. Kang, Wenfa & Chen, Minyou & Lai, Wei & Luo, Yanyu, 2021. "Distributed real-time power management for virtual energy storage systems using dynamic price," Energy, Elsevier, vol. 216(C).
    6. Candas, Soner & Reveron Baecker, Beneharo & Mohapatra, Anurag & Hamacher, Thomas, 2023. "Optimization-based framework for low-voltage grid reinforcement assessment under various levels of flexibility and coordination," Applied Energy, Elsevier, vol. 343(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gharibvand, Hossein & Gharehpetian, G.B. & Anvari-Moghaddam, A., 2024. "A survey on microgrid flexibility resources, evaluation metrics and energy storage effects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 201(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Peng & Ji, Haoran & Yu, Hao & Zhao, Jinli & Wang, Chengshan & Song, Guanyu & Wu, Jianzhong, 2019. "Combined decentralized and local voltage control strategy of soft open points in active distribution networks," Applied Energy, Elsevier, vol. 241(C), pages 613-624.
    2. Bao, Minglei & Hui, Hengyu & Ding, Yi & Sun, Xiaocong & Zheng, Chenghang & Gao, Xiang, 2023. "An efficient framework for exploiting operational flexibility of load energy hubs in risk management of integrated electricity-gas systems," Applied Energy, Elsevier, vol. 338(C).
    3. Qitong Fu & Zuoxia Xing & Chao Zhang & Jian Xu, 2024. "A Review and Prospective Study on Modeling Approaches and Applications of Virtual Energy Storage in Integrated Electric–Thermal Energy Systems," Energies, MDPI, vol. 17(16), pages 1-21, August.
    4. Miranda, Rodolfo Farías & Salgado-Herrera, Nadia Maria & Rodríguez-Hernández, Osvaldo & Rodríguez-Rodríguez, Juan Ramon & Robles, Miguel & Ruiz-Robles, Dante & Venegas-Rebollar, Vicente, 2022. "Distributed generation in low-voltage DC systems by wind energy in the Baja California Peninsula, Mexico," Energy, Elsevier, vol. 242(C).
    5. Aguado, José A. & Paredes, Ángel, 2023. "Coordinated and decentralized trading of flexibility products in Inter-DSO Local Electricity Markets via ADMM," Applied Energy, Elsevier, vol. 337(C).
    6. Yin, Linfei & Lu, Yuejiang, 2021. "Expandable deep width learning for voltage control of three-state energy model based smart grids containing flexible energy sources," Energy, Elsevier, vol. 226(C).
    7. Pinciroli, Luca & Baraldi, Piero & Compare, Michele & Zio, Enrico, 2023. "Optimal operation and maintenance of energy storage systems in grid-connected microgrids by deep reinforcement learning," Applied Energy, Elsevier, vol. 352(C).
    8. Su, Hongzhi & Wang, Chengshan & Li, Peng & Li, Peng & Liu, Zhelin & Wu, Jianzhong, 2019. "Novel voltage-to-power sensitivity estimation for phasor measurement unit-unobservable distribution networks based on network equivalent," Applied Energy, Elsevier, vol. 250(C), pages 302-312.
    9. Klyapovskiy, Sergey & You, Shi & Michiorri, Andrea & Kariniotakis, George & Bindner, Henrik W., 2019. "Incorporating flexibility options into distribution grid reinforcement planning: A techno-economic framework approach," Applied Energy, Elsevier, vol. 254(C).
    10. Aghdam, Farid Hamzeh & Mudiyanselage, Manthila Wijesooriya & Mohammadi-Ivatloo, Behnam & Marzband, Mousa, 2023. "Optimal scheduling of multi-energy type virtual energy storage system in reconfigurable distribution networks for congestion management," Applied Energy, Elsevier, vol. 333(C).
    11. Venizelos Venizelou & Apostolos C. Tsolakis & Demetres Evagorou & Christos Patsonakis & Ioannis Koskinas & Phivos Therapontos & Lampros Zyglakis & Dimosthenis Ioannidis & George Makrides & Dimitrios T, 2023. "DSO-Aggregator Demand Response Cooperation Framework towards Reliable, Fair and Secure Flexibility Dispatch," Energies, MDPI, vol. 16(6), pages 1-21, March.
    12. Li, Peng & Ji, Jie & Ji, Haoran & Song, Guanyu & Wang, Chengshan & Wu, Jianzhong, 2020. "Self-healing oriented supply restoration method based on the coordination of multiple SOPs in active distribution networks," Energy, Elsevier, vol. 195(C).
    13. Takele Ferede Agajie & Armand Fopah-Lele & Isaac Amoussou & Ahmed Ali & Baseem Khan & Om Prakash Mahela & Ramakrishna S. S. Nuvvula & Divine Khan Ngwashi & Emmanuel Soriano Flores & Emmanuel Tanyi, 2023. "Techno-Economic Analysis and Optimization of Hybrid Renewable Energy System with Energy Storage under Two Operational Modes," Sustainability, MDPI, vol. 15(15), pages 1-31, July.
    14. Abdellatif Soussi & Enrico Zero & Alessandro Bozzi & Roberto Sacile, 2024. "Enhancing Energy Systems and Rural Communities through a System of Systems Approach: A Comprehensive Review," Energies, MDPI, vol. 17(19), pages 1-43, October.
    15. Jiao, Heng & Xiao, Jun & Zu, Guoqiang & Song, Chenhui & Lv, Zihan & Bao, Zhenyu & Qiu, Zekai, 2024. "Concavity-convexity of distribution system security region. Part II: Mathematical principle, judgment, and application," Applied Energy, Elsevier, vol. 361(C).
    16. Lv, Chaoxian & Liang, Rui & Zhang, Ge & Zhang, Xiaotong & Jin, Wei, 2023. "Energy accommodation-oriented interaction of active distribution network and central energy station considering soft open points," Energy, Elsevier, vol. 268(C).
    17. Su, Hongzhi & Wang, Chengshan & Li, Peng & Liu, Zhelin & Yu, Li & Wu, Jianzhong, 2019. "Optimal placement of phasor measurement unit in distribution networks considering the changes in topology," Applied Energy, Elsevier, vol. 250(C), pages 313-322.
    18. Firouzi, Mehdi & Setayesh Nazar, Mehrdad & Shafie-khah, Miadreza & Catalão, João P.S., 2023. "Integrated framework for modeling the interactions of plug-in hybrid electric vehicles aggregators, parking lots and distributed generation facilities in electricity markets," Applied Energy, Elsevier, vol. 334(C).
    19. Zhao, Jinli & Zhang, Mengzhen & Yu, Hao & Ji, Haoran & Song, Guanyu & Li, Peng & Wang, Chengshan & Wu, Jianzhong, 2019. "An islanding partition method of active distribution networks based on chance-constrained programming," Applied Energy, Elsevier, vol. 242(C), pages 78-91.
    20. Deakin, Matthew & Sarantakos, Ilias & Greenwood, David & Bialek, Janusz & Taylor, Phil C. & Walker, Sara, 2023. "Comparative analysis of services from soft open points using cost–benefit analysis," Applied Energy, Elsevier, vol. 333(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:353:y:2024:i:pb:s0306261923015453. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.