IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i21p7376-d672882.html
   My bibliography  Save this article

Multi-Level Cooperative Scheduling Based on Robust Optimization Considering Flexibilities and Uncertainties of ADN and MG

Author

Listed:
  • Ziqi Zhang

    (School of Electrical Engineering, Southeast University, Nanjing 210096, China)

  • Zhong Chen

    (School of Electrical Engineering, Southeast University, Nanjing 210096, China)

  • Qi Zhao

    (Suzhou Power Supply Branch, State Grid Jiangsu Electric Power Co., Ltd., Suzhou 215004, China)

  • Puliang Du

    (School of Electrical Engineering, Southeast University, Nanjing 210096, China)

Abstract

This paper develops the coordination structure and method for utilizing flexibilities in a Micro-Grid (MG), an Active Distribution Network (ADN) and a Transmission Grid (TG), which can play an essential role in addressing the uncertainties caused by renewable energy power generation (REPG). For cooperative dispatching, both flexibilities and uncertainties on the interface of MG–ADN and ADN–TG are portrayed in unified forms utilizing robust optimization (RO), based on the modified equipment-level model of flexible resources. The Constraint-and-Column Generation method is adopted to solve the RO control problems. Simulations on the modified IEEE case-6 and case-33 systems are carried out. The results suggest that the proposed algorithm can exploit flexible resources in both an MG and an ADN, improving the economy and promoting REPG consumption within each level (MG, ADN and TG) while reducing uncertainties and providing flexibilities for superior operators.

Suggested Citation

  • Ziqi Zhang & Zhong Chen & Qi Zhao & Puliang Du, 2021. "Multi-Level Cooperative Scheduling Based on Robust Optimization Considering Flexibilities and Uncertainties of ADN and MG," Energies, MDPI, vol. 14(21), pages 1-23, November.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:21:p:7376-:d:672882
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/21/7376/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/21/7376/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ji, Haoran & Wang, Chengshan & Li, Peng & Song, Guanyu & Yu, Hao & Wu, Jianzhong, 2019. "Quantified analysis method for operational flexibility of active distribution networks with high penetration of distributed generators," Applied Energy, Elsevier, vol. 239(C), pages 706-714.
    2. Tuohy, Aidan & Meibom, Peter & Denny, Eleanor & O'Malley, Mark, 2009. "Unit commitment for systems with significant wind penetration," MPRA Paper 34849, University Library of Munich, Germany.
    3. Li, Jia & Liu, Feng & Li, Zuyi & Shao, Chengcheng & Liu, Xinyuan, 2018. "Grid-side flexibility of power systems in integrating large-scale renewable generations: A critical review on concepts, formulations and solution approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 272-284.
    4. Hansen, Kenneth & Mathiesen, Brian Vad & Skov, Iva Ridjan, 2019. "Full energy system transition towards 100% renewable energy in Germany in 2050," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 1-13.
    5. Gerard, Helena & Rivero Puente, Enrique Israel & Six, Daan, 2018. "Coordination between transmission and distribution system operators in the electricity sector: A conceptual framework," Utilities Policy, Elsevier, vol. 50(C), pages 40-48.
    6. Tabatabaee, Sajad & Mortazavi, Seyed Saeedallah & Niknam, Taher, 2017. "Stochastic scheduling of local distribution systems considering high penetration of plug-in electric vehicles and renewable energy sources," Energy, Elsevier, vol. 121(C), pages 480-490.
    7. Wang, Yuwei & Tang, Liu & Yang, Yuanjuan & Sun, Wei & Zhao, Huiru, 2020. "A stochastic-robust coordinated optimization model for CCHP micro-grid considering multi-energy operation and power trading with electricity markets under uncertainties," Energy, Elsevier, vol. 198(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bellocchi, Sara & De Falco, Marcello & Gambini, Marco & Manno, Michele & Stilo, Tommaso & Vellini, Michela, 2019. "Opportunities for power-to-Gas and Power-to-liquid in CO2-reduced energy scenarios: The Italian case," Energy, Elsevier, vol. 175(C), pages 847-861.
    2. Sevdari, Kristian & Calearo, Lisa & Andersen, Peter Bach & Marinelli, Mattia, 2022. "Ancillary services and electric vehicles: An overview from charging clusters and chargers technology perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    3. Kara, Güray & Tomasgard, Asgeir & Farahmand, Hossein, 2022. "Characterizing flexibility in power markets and systems," Utilities Policy, Elsevier, vol. 75(C).
    4. Zapata, Sebastian & Castaneda, Monica & Aristizabal, Andres J. & Dyner, Isaac, 2022. "Renewables for supporting supply adequacy in Colombia," Energy, Elsevier, vol. 239(PC).
    5. Després, Jacques & Hadjsaid, Nouredine & Criqui, Patrick & Noirot, Isabelle, 2015. "Modelling the impacts of variable renewable sources on the power sector: Reconsidering the typology of energy modelling tools," Energy, Elsevier, vol. 80(C), pages 486-495.
    6. Tim Felling & Björn Felten & Paul Osinski & Christoph Weber, 2023. "Assessing Improved Price Zones in Europe: Flow-Based Market Coupling in Central Western Europe in Focus," The Energy Journal, , vol. 44(6), pages 71-112, November.
    7. Vithayasrichareon, Peerapat & MacGill, Iain F., 2013. "Assessing the value of wind generation in future carbon constrained electricity industries," Energy Policy, Elsevier, vol. 53(C), pages 400-412.
    8. Rebenaque, Olivier & Schmitt, Carlo & Schumann, Klemens & Dronne, Théo & Roques, Fabien, 2023. "Success of local flexibility market implementation: A review of current projects," Utilities Policy, Elsevier, vol. 80(C).
    9. Osório, G.J. & Lujano-Rojas, J.M. & Matias, J.C.O. & Catalão, J.P.S., 2015. "A probabilistic approach to solve the economic dispatch problem with intermittent renewable energy sources," Energy, Elsevier, vol. 82(C), pages 949-959.
    10. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    11. Lund, Henrik & Thellufsen, Jakob Zinck & Sorknæs, Peter & Mathiesen, Brian Vad & Chang, Miguel & Madsen, Poul Thøis & Kany, Mikkel Strunge & Skov, Iva Ridjan, 2022. "Smart energy Denmark. A consistent and detailed strategy for a fully decarbonized society," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    12. Stephan Kigle & Michael Ebner & Andrej Guminski, 2022. "Greenhouse Gas Abatement in EUROPE—A Scenario-Based, Bottom-Up Analysis Showing the Effect of Deep Emission Mitigation on the European Energy System," Energies, MDPI, vol. 15(4), pages 1-18, February.
    13. Li, Peng & Ji, Haoran & Yu, Hao & Zhao, Jinli & Wang, Chengshan & Song, Guanyu & Wu, Jianzhong, 2019. "Combined decentralized and local voltage control strategy of soft open points in active distribution networks," Applied Energy, Elsevier, vol. 241(C), pages 613-624.
    14. Jiang, Tao & Wu, Chenghao & Huang, Tao & Zhang, Rufeng & Li, Xue, 2024. "Optimal market participation of VPPs in TSO-DSO coordinated energy and flexibility markets," Applied Energy, Elsevier, vol. 360(C).
    15. Bingke Yan & Bo Wang & Lin Zhu & Hesen Liu & Yilu Liu & Xingpei Ji & Dichen Liu, 2015. "A Novel, Stable, and Economic Power Sharing Scheme for an Autonomous Microgrid in the Energy Internet," Energies, MDPI, vol. 8(11), pages 1-24, November.
    16. Maruf, Md. Nasimul Islam, 2021. "Open model-based analysis of a 100% renewable and sector-coupled energy system–The case of Germany in 2050," Applied Energy, Elsevier, vol. 288(C).
    17. Mansour-Saatloo, Amin & Pezhmani, Yasin & Mirzaei, Mohammad Amin & Mohammadi-Ivatloo, Behnam & Zare, Kazem & Marzband, Mousa & Anvari-Moghaddam, Amjad, 2021. "Robust decentralized optimization of Multi-Microgrids integrated with Power-to-X technologies," Applied Energy, Elsevier, vol. 304(C).
    18. Katrin Trepper & Michael Bucksteeg & Christoph Weber, 2013. "An integrated approach to model redispatch and to assess potential benefits from market splitting in Germany," EWL Working Papers 1319, University of Duisburg-Essen, Chair for Management Science and Energy Economics, revised Apr 2014.
    19. Gokturk Poyrazoglu & HyungSeon Oh, 2019. "Co-optimization of Transmission Maintenance Scheduling and Production Cost Minimization," Energies, MDPI, vol. 12(15), pages 1-18, July.
    20. Hasankhani, Arezoo & Hakimi, Seyed Mehdi, 2021. "Stochastic energy management of smart microgrid with intermittent renewable energy resources in electricity market," Energy, Elsevier, vol. 219(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:21:p:7376-:d:672882. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.