IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v338y2023ics0306261923001290.html
   My bibliography  Save this article

An efficient framework for exploiting operational flexibility of load energy hubs in risk management of integrated electricity-gas systems

Author

Listed:
  • Bao, Minglei
  • Hui, Hengyu
  • Ding, Yi
  • Sun, Xiaocong
  • Zheng, Chenghang
  • Gao, Xiang

Abstract

Faced with increasing operational uncertainties, e.g. wind power variation, the risk management of integrated electricity-gas systems (IEGSs) has become extremely vital, which puts forward a higher requirement for flexible resources. On the demand side of IEGSs, local energy hubs (LEHs) composed of different energy devices can provide flexible resources for system risk management through multi-energy substitution. However, it can be difficult to exploit the operational flexibility of massive LEHs in IEGS operation owing to two major issues, namely 1) privacy concerns of individuals; 2) computation efficiency requirements. To address this, an efficient framework based on flexible regions is innovatively proposed for exploiting LEH flexibility in the risk management of IEGSs. The flexible region is estimated to characterize the adjustable range of energy inputs to LEHs considering the operational requirements of internal energy devices. On this basis, essential flexibility-related information of LEHs is directly utilized for system risk management, which can preserve individual privacy and avoid time-consuming iteration. Firstly, a generalized method based on Minkowski Summation is proposed to efficiently determine the flexible region of LEH, which contains time-independent and temporal-related parts. The two regions are formulated separately considering the multi-energy substitution of LEH and the charging/discharging process of electric storage. The flexible region is then mathematically formulated as a set of linearized equations, which can be directly incorporated into the system scheduling model. On this basis, a risk-based two-stage optimization model is developed for the coordinate dispatch of IEGSs and LEHs considering wind power uncertainties. Case studies demonstrate that the exploitation of LEH flexibility can effectively mitigate operational risk levels of IEGSs and reduce system costs. Besides, the proposed model has the advantage of high computation efficiency compared to the existing iteration-based method.

Suggested Citation

  • Bao, Minglei & Hui, Hengyu & Ding, Yi & Sun, Xiaocong & Zheng, Chenghang & Gao, Xiang, 2023. "An efficient framework for exploiting operational flexibility of load energy hubs in risk management of integrated electricity-gas systems," Applied Energy, Elsevier, vol. 338(C).
  • Handle: RePEc:eee:appene:v:338:y:2023:i:c:s0306261923001290
    DOI: 10.1016/j.apenergy.2023.120765
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923001290
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.120765?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Forero-Quintero, Jose-Fernando & Villafáfila-Robles, Roberto & Barja-Martinez, Sara & Munné-Collado, Ingrid & Olivella-Rosell, Pol & Montesinos-Miracle, Daniel, 2022. "Profitability analysis on demand-side flexibility: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    2. Hui, Hengyu & Bao, Minglei & Ding, Yi & Song, Yonghua, 2022. "Exploring the integrated flexible region of distributed multi-energy systems with process industry," Applied Energy, Elsevier, vol. 311(C).
    3. Chen, Sirui & Li, Peng & Ji, Haoran & Yu, Hao & Yan, Jinyue & Wu, Jianzhong & Wang, Chengshan, 2021. "Operational flexibility of active distribution networks with the potential from data centers," Applied Energy, Elsevier, vol. 293(C).
    4. Ma, Tengfei & Wu, Junyong & Hao, Liangliang & Lee, Wei-Jen & Yan, Huaguang & Li, Dezhi, 2018. "The optimal structure planning and energy management strategies of smart multi energy systems," Energy, Elsevier, vol. 160(C), pages 122-141.
    5. Zhang, Yachao & Le, Jian & Zheng, Feng & Zhang, Yi & Liu, Kaipei, 2019. "Two-stage distributionally robust coordinated scheduling for gas-electricity integrated energy system considering wind power uncertainty and reserve capacity configuration," Renewable Energy, Elsevier, vol. 135(C), pages 122-135.
    6. Mohammadi, Mohammad & Noorollahi, Younes & Mohammadi-ivatloo, Behnam & Yousefi, Hossein, 2017. "Energy hub: From a model to a concept – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1512-1527.
    7. Oskouei, Morteza Zare & Mohammadi-Ivatloo, Behnam & Abapour, Mehdi & Shafiee, Mahmood & Anvari-Moghaddam, Amjad, 2021. "Privacy-preserving mechanism for collaborative operation of high-renewable power systems and industrial energy hubs," Applied Energy, Elsevier, vol. 283(C).
    8. Dias, Bruno Henriques & Tomim, Marcelo Aroca & Marcato, André Luís Marques & Ramos, Tales Pulinho & Brandi, Rafael Bruno S. & Junior, Ivo Chaves da Silva & Filho, João Alberto Passos, 2013. "Parallel computing applied to the stochastic dynamic programming for long term operation planning of hydrothermal power systems," European Journal of Operational Research, Elsevier, vol. 229(1), pages 212-222.
    9. Bao, Minglei & Ding, Yi & Sang, Maosheng & Li, Daqing & Shao, Changzheng & Yan, Jinyue, 2020. "Modeling and evaluating nodal resilience of multi-energy systems under windstorms," Applied Energy, Elsevier, vol. 270(C).
    10. DE WOLF, Daniel & SMEERS, Yves, 2000. "The gas transmission problem solved by an extension of the simplex algorithm," LIDAM Reprints CORE 1489, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    11. Fang, Xin & Cui, Hantao & Yuan, Haoyu & Tan, Jin & Jiang, Tao, 2019. "Distributionally-robust chance constrained and interval optimization for integrated electricity and natural gas systems optimal power flow with wind uncertainties," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    12. Wang, Jianxiao & Zhong, Haiwang & Ma, Ziming & Xia, Qing & Kang, Chongqing, 2017. "Review and prospect of integrated demand response in the multi-energy system," Applied Energy, Elsevier, vol. 202(C), pages 772-782.
    13. Daniel De Wolf & Yves Smeers, 2000. "The Gas Transmission Problem Solved by an Extension of the Simplex Algorithm," Management Science, INFORMS, vol. 46(11), pages 1454-1465, November.
    14. Ji, Haoran & Wang, Chengshan & Li, Peng & Song, Guanyu & Yu, Hao & Wu, Jianzhong, 2019. "Quantified analysis method for operational flexibility of active distribution networks with high penetration of distributed generators," Applied Energy, Elsevier, vol. 239(C), pages 706-714.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Fan & Duan, Jiandong & Wu, Chen & Tian, Qinxing, 2024. "Risk-averse distributed optimization for integrated electricity-gas systems considering uncertainties of Wind-PV and power-to-gas," Renewable Energy, Elsevier, vol. 227(C).
    2. Hou, Yanqiu & Bao, Minglei & Sang, Maosheng & Ding, Yi, 2024. "A market framework to exploit the multi-energy operating reserve of smart energy hubs in the integrated electricity-gas systems," Applied Energy, Elsevier, vol. 357(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Tianhao & Tian, Jun & Zhu, Hongyu & Goh, Hui Hwang & Liu, Hui & Wu, Thomas & Zhang, Dongdong, 2023. "Key technologies and developments of multi-energy system: Three-layer framework, modelling and optimisation," Energy, Elsevier, vol. 277(C).
    2. Duan, Jiandong & Liu, Fan & Yang, Yao, 2022. "Optimal operation for integrated electricity and natural gas systems considering demand response uncertainties," Applied Energy, Elsevier, vol. 323(C).
    3. Ren, Kezheng & Liu, Jun & Liu, Xinglei & Nie, Yongxin, 2023. "Reinforcement Learning-Based Bi-Level strategic bidding model of Gas-fired unit in integrated electricity and natural gas markets preventing market manipulation," Applied Energy, Elsevier, vol. 336(C).
    4. Hosseini, Seyed Hamid Reza & Allahham, Adib & Walker, Sara Louise & Taylor, Phil, 2020. "Optimal planning and operation of multi-vector energy networks: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    5. Xie, Shiwei & Hu, Zhijian & Wang, Jueying & Chen, Yuwei, 2020. "The optimal planning of smart multi-energy systems incorporating transportation, natural gas and active distribution networks," Applied Energy, Elsevier, vol. 269(C).
    6. Xie, Shiwei & Zheng, Jieyun & Hu, Zhijian & Wang, Jueying & Chen, Yuwei, 2020. "Urban multi-energy network optimization: An enhanced model using a two-stage bound-tightening approach," Applied Energy, Elsevier, vol. 277(C).
    7. Sang, Maosheng & Ding, Yi & Bao, Minglei & Li, Siying & Ye, Chengjin & Fang, Youtong, 2021. "Resilience-based restoration strategy optimization for interdependent gas and power networks," Applied Energy, Elsevier, vol. 302(C).
    8. Bao, Minglei & Ding, Yi & Sang, Maosheng & Li, Daqing & Shao, Changzheng & Yan, Jinyue, 2020. "Modeling and evaluating nodal resilience of multi-energy systems under windstorms," Applied Energy, Elsevier, vol. 270(C).
    9. Yang, Sheng & Liu, Beilin & Li, Xiaolong & Liu, Zhiqiang & Liu, Yue & Xie, Nan & Ren, Jingzheng, 2023. "Flexibility index for a distributed energy system design optimization," Renewable Energy, Elsevier, vol. 219(P1).
    10. Bao, Minglei & Ding, Yi & Yin, Xunhu & Shao, Changzheng & Ye, Chenjin, 2021. "Definitions and Reliability Evaluation of Multi-state Systems Considering State Transition Process and its Application for Gas Systems," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    11. Alabi, Tobi Michael & Aghimien, Emmanuel I. & Agbajor, Favour D. & Yang, Zaiyue & Lu, Lin & Adeoye, Adebusola R. & Gopaluni, Bhushan, 2022. "A review on the integrated optimization techniques and machine learning approaches for modeling, prediction, and decision making on integrated energy systems," Renewable Energy, Elsevier, vol. 194(C), pages 822-849.
    12. Yang, Dechang & Wang, Ming & Yang, Ruiqi & Zheng, Yingying & Pandzic, Hrvoje, 2021. "Optimal dispatching of an energy system with integrated compressed air energy storage and demand response," Energy, Elsevier, vol. 234(C).
    13. Beyza, Jesus & Ruiz-Paredes, Hector F. & Garcia-Paricio, Eduardo & Yusta, Jose M., 2020. "Assessing the criticality of interdependent power and gas systems using complex networks and load flow techniques," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    14. Daniel de Wolf, 2017. "Mathematical Properties of Formulations of the Gas Transmission Problem," Post-Print halshs-02396747, HAL.
    15. Mengying Xue & Tianhu Deng & Zuo‐Jun Max Shen, 2019. "Optimizing natural gas pipeline transmission with nonuniform elevation: A new initialization approach," Naval Research Logistics (NRL), John Wiley & Sons, vol. 66(7), pages 547-564, October.
    16. Conrado Borraz-Sánchez & Dag Haugland, 2013. "Optimization methods for pipeline transportation of natural gas with variable specific gravity and compressibility," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 21(3), pages 524-541, October.
    17. Zhou, Li & Liao, Zuwei & Wang, Jingdai & Jiang, Binbo & Yang, Yongrong & Du, Wenli, 2015. "Energy configuration and operation optimization of refinery fuel gas networks," Applied Energy, Elsevier, vol. 139(C), pages 365-375.
    18. repec:cty:dpaper:1464 is not listed on IDEAS
    19. Hong, Sung-Pil & Kim, Taegyoon & Lee, Subin, 2019. "A precision pump schedule optimization for the water supply networks with small buffers," Omega, Elsevier, vol. 82(C), pages 24-37.
    20. Dieckhoener, Caroline, 2010. "Simulating security of supply effects of the Nabucco and South Stream projects for the European natural gas market," EWI Working Papers 2010-7, Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI), revised 21 Jan 2012.
    21. Song, Chenhui & Xiao, Jun & Zu, Guoqiang & Hao, Ziyuan & Zhang, Xinsong, 2021. "Security region of natural gas pipeline network system: Concept, method and application," Energy, Elsevier, vol. 217(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:338:y:2023:i:c:s0306261923001290. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.