IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i10p3657-d817028.html
   My bibliography  Save this article

Disturbance Observer-Based Model Predictive Super-Twisting Control for Soft Open Point

Author

Listed:
  • Zhengqi Wang

    (School of Electric Power Engineering, Nanjing Institute of Technology, Nanjing 211167, China)

  • Haoyu Zhou

    (School of Electric Power Engineering, Nanjing Institute of Technology, Nanjing 211167, China)

  • Hongyu Su

    (School of Electrical and Electronic Engineering, Harbin University of Science and Technology, Harbin 150001, China)

Abstract

This paper presents a disturbance observer-based model predictive of super-twisting control for Soft Open Point (SOP). First, with the consideration of the disturbances caused by parameter mismatches and unmodelled dynamics, a super-twisting sliding-mode observer (STO) is proposed to observe the disturbances, and the observed disturbances are introduced into the inner-loop as the compensation to improve the anti-disturbance of SOP system. Second, the outer-loop controller is designed by applying the super-twisting sliding-mode control (STC) approach to improve the dynamic performance and robustness. Third, to deal with large current harmonics by traditional model predictive control (MPC), a Three-Vector-based MPC (TV-MPC) is proposed to increase the number of voltage vectors in a sampling time. Finally, it is verified by simulations that the proposed method can reduce current harmonics, DC-side voltage setting time and improve the dynamic performance of SOP system effectively. In case of parameter mismatches, the proposed observer can observe the disturbances correctly to enhance the robustness of the SOP system.

Suggested Citation

  • Zhengqi Wang & Haoyu Zhou & Hongyu Su, 2022. "Disturbance Observer-Based Model Predictive Super-Twisting Control for Soft Open Point," Energies, MDPI, vol. 15(10), pages 1-19, May.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:10:p:3657-:d:817028
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/10/3657/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/10/3657/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cao, Wanyu & Wu, Jianzhong & Jenkins, Nick & Wang, Chengshan & Green, Timothy, 2016. "Operating principle of Soft Open Points for electrical distribution network operation," Applied Energy, Elsevier, vol. 164(C), pages 245-257.
    2. Wang, Chengshan & Song, Guanyu & Li, Peng & Ji, Haoran & Zhao, Jinli & Wu, Jianzhong, 2017. "Optimal siting and sizing of soft open points in active electrical distribution networks," Applied Energy, Elsevier, vol. 189(C), pages 301-309.
    3. Cao, Wanyu & Wu, Jianzhong & Jenkins, Nick & Wang, Chengshan & Green, Timothy, 2016. "Benefits analysis of Soft Open Points for electrical distribution network operation," Applied Energy, Elsevier, vol. 165(C), pages 36-47.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Peng & Ji, Haoran & Yu, Hao & Zhao, Jinli & Wang, Chengshan & Song, Guanyu & Wu, Jianzhong, 2019. "Combined decentralized and local voltage control strategy of soft open points in active distribution networks," Applied Energy, Elsevier, vol. 241(C), pages 613-624.
    2. Ji, Haoran & Wang, Chengshan & Li, Peng & Song, Guanyu & Yu, Hao & Wu, Jianzhong, 2019. "Quantified analysis method for operational flexibility of active distribution networks with high penetration of distributed generators," Applied Energy, Elsevier, vol. 239(C), pages 706-714.
    3. Irina I. Picioroaga & Andrei M. Tudose & Dorian O. Sidea & Constantin Bulac, 2022. "Supply Restoration in Active Distribution Networks Based on Soft Open Points with Embedded DC Microgrids," Mathematics, MDPI, vol. 10(2), pages 1-21, January.
    4. Bai, Linquan & Jiang, Tao & Li, Fangxing & Chen, Houhe & Li, Xue, 2018. "Distributed energy storage planning in soft open point based active distribution networks incorporating network reconfiguration and DG reactive power capability," Applied Energy, Elsevier, vol. 210(C), pages 1082-1091.
    5. Juan Noh & Seungjun Gham & Myungseok Yoon & Wookyu Chae & Woohyun Kim & Sungyun Choi, 2023. "A Study on a Communication-Based Algorithm to Improve Protection Coordination under High-Impedance Fault in Networked Distribution Systems," Sustainability, MDPI, vol. 15(21), pages 1-19, October.
    6. Ji, Haoran & Wang, Chengshan & Li, Peng & Zhao, Jinli & Song, Guanyu & Wu, Jianzhong, 2018. "Quantified flexibility evaluation of soft open points to improve distributed generator penetration in active distribution networks based on difference-of-convex programming," Applied Energy, Elsevier, vol. 218(C), pages 338-348.
    7. Aithal, Avinash & Li, Gen & Wu, Jianzhong & Yu, James, 2018. "Performance of an electrical distribution network with Soft Open Point during a grid side AC fault," Applied Energy, Elsevier, vol. 227(C), pages 262-272.
    8. Ibrahim Diaaeldin & Shady Abdel Aleem & Ahmed El-Rafei & Almoataz Abdelaziz & Ahmed F. Zobaa, 2019. "Optimal Network Reconfiguration in Active Distribution Networks with Soft Open Points and Distributed Generation," Energies, MDPI, vol. 12(21), pages 1-31, November.
    9. Deakin, Matthew & Sarantakos, Ilias & Greenwood, David & Bialek, Janusz & Taylor, Phil C. & Walker, Sara, 2023. "Comparative analysis of services from soft open points using cost–benefit analysis," Applied Energy, Elsevier, vol. 333(C).
    10. Bastami, Houman & Shakarami, Mahmoud Reza & Doostizadeh, Meysam, 2021. "A decentralized cooperative framework for multi-area active distribution network in presence of inter-area soft open points," Applied Energy, Elsevier, vol. 300(C).
    11. Ji, Haoran & Wang, Chengshan & Li, Peng & Song, Guanyu & Wu, Jianzhong, 2018. "SOP-based islanding partition method of active distribution networks considering the characteristics of DG, energy storage system and load," Energy, Elsevier, vol. 155(C), pages 312-325.
    12. Escalera, Alberto & Prodanović, Milan & Castronuovo, Edgardo D. & Roldan-Perez, Javier, 2020. "Contribution of active management technologies to the reliability of power distribution networks," Applied Energy, Elsevier, vol. 267(C).
    13. Ji, Haoran & Wang, Chengshan & Li, Peng & Zhao, Jinli & Song, Guanyu & Ding, Fei & Wu, Jianzhong, 2017. "An enhanced SOCP-based method for feeder load balancing using the multi-terminal soft open point in active distribution networks," Applied Energy, Elsevier, vol. 208(C), pages 986-995.
    14. Qi, Qi & Wu, Jianzhong & Long, Chao, 2017. "Multi-objective operation optimization of an electrical distribution network with soft open point," Applied Energy, Elsevier, vol. 208(C), pages 734-744.
    15. Wu, Pan & Huang, Wentao & Tai, Nengling & Liang, Shuo, 2018. "A novel design of architecture and control for multiple microgrids with hybrid AC/DC connection," Applied Energy, Elsevier, vol. 210(C), pages 1002-1016.
    16. Zhang, Lu & Shen, Chen & Chen, Ying & Huang, Shaowei & Tang, Wei, 2018. "Coordinated allocation of distributed generation, capacitor banks and soft open points in active distribution networks considering dispatching results," Applied Energy, Elsevier, vol. 231(C), pages 1122-1131.
    17. Wang, Chengshan & Song, Guanyu & Li, Peng & Ji, Haoran & Zhao, Jinli & Wu, Jianzhong, 2017. "Optimal siting and sizing of soft open points in active electrical distribution networks," Applied Energy, Elsevier, vol. 189(C), pages 301-309.
    18. Wang, Ke & Xue, Yixun & Zhou, Yue & Li, Zening & Chang, Xinyue & Sun, Hongbin, 2024. "Distributed coordinated reconfiguration with soft open points for resilience-oriented restoration in integrated electric and heating systems," Applied Energy, Elsevier, vol. 365(C).
    19. Ridha Djamel Mohammedi & Djamal Gozim & Abdellah Kouzou & Mustafa Mosbah & Ahmed Hafaifa & Jose Rodriguez & Mohamed Abdelrahem, 2024. "Simultaneous Optimization of Network Reconfiguration and Soft Open Points Placement in Radial Distribution Systems Using a Lévy Flight-Based Improved Equilibrium Optimizer," Energies, MDPI, vol. 17(23), pages 1-37, November.
    20. Gonzalez Venegas, Felipe & Petit, Marc & Perez, Yannick, 2021. "Active integration of electric vehicles into distribution grids: Barriers and frameworks for flexibility services," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:10:p:3657-:d:817028. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.