IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v233-234y2019ip516-523.html
   My bibliography  Save this article

High efficient internal combustion engine using partially premixed combustion with multiple injections

Author

Listed:
  • Yin, Lianhao
  • Lundgren, Marcus
  • Wang, Zhenkan
  • Stamatoglou, Panagiota
  • Richter, Mattias
  • Andersson, Öivind
  • Tunestål, Per

Abstract

Improving the efficiency of the powertrain system is of great importance to reduce the greenhouse gas CO2. Advanced combustion engine with Partially Premixed Combustion (PPC) is one of the best solutions. It is proved to have a high engine efficiency and low emission level. Using multiple injections is a good way to achieve PPC. The efficiencies using multiple injections were evaluated on a metal engine with modern architecture and the reasoning behind that was explored on an optical engine. The metal engine results shown that the point with optimized multiple injections is of higher efficiency than a single injection. Optical results demonstrated that the direct interaction of the first and later injection, as well as the interactions of the fuel and the in-cylinder bulk flow fields and surfaces, could affect mixing and fuel movement and, hence the efficiency. One of the reasons why the optimized multiple injections have a higher efficiency is that the center of the fuel is moved close to the center of the cylinder. Thus, the heat transfer between the heat produced from the fuel-gas mixture and the cylinder liner can be reduced by the isolation. This explains how the injections influence the fuel distribution and the heat transfer and, hence, the engine efficiency.

Suggested Citation

  • Yin, Lianhao & Lundgren, Marcus & Wang, Zhenkan & Stamatoglou, Panagiota & Richter, Mattias & Andersson, Öivind & Tunestål, Per, 2019. "High efficient internal combustion engine using partially premixed combustion with multiple injections," Applied Energy, Elsevier, vol. 233, pages 516-523.
  • Handle: RePEc:eee:appene:v:233-234:y:2019:i::p:516-523
    DOI: 10.1016/j.apenergy.2018.09.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261918313126
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2018.09.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Yu & Li, Hailin & Guo, Hongsheng & Wang, Hu & Yao, Mingfa, 2018. "A numerical study on the chemical kinetics process during auto-ignition of n-heptane in a direct injection compression ignition engine," Applied Energy, Elsevier, vol. 212(C), pages 909-918.
    2. Zhang, Ming & Li, Huanan & Zhou, Min & Mu, Hailin, 2011. "Decomposition analysis of energy consumption in Chinese transportation sector," Applied Energy, Elsevier, vol. 88(6), pages 2279-2285, June.
    3. Gan, Suyin & Ng, Hoon Kiat & Pang, Kar Mun, 2011. "Homogeneous Charge Compression Ignition (HCCI) combustion: Implementation and effects on pollutants in direct injection diesel engines," Applied Energy, Elsevier, vol. 88(3), pages 559-567, March.
    4. Kalghatgi, Gautam, 2018. "Is it really the end of internal combustion engines and petroleum in transport?," Applied Energy, Elsevier, vol. 225(C), pages 965-974.
    5. Benajes, Jesús & Molina, Santiago & García, Antonio & Monsalve-Serrano, Javier & Durrett, Russell, 2014. "Conceptual model description of the double injection strategy applied to the gasoline partially premixed compression ignition combustion concept with spark assistance," Applied Energy, Elsevier, vol. 129(C), pages 1-9.
    6. Benajes, J. & Molina, S. & Novella, R. & De Lima, D., 2014. "Implementation of the Partially Premixed Combustion concept in a 2-stroke HSDI diesel engine fueled with gasoline," Applied Energy, Elsevier, vol. 122(C), pages 94-111.
    7. Du, Jiuyu & Ouyang, Danhua, 2017. "Progress of Chinese electric vehicles industrialization in 2015: A review," Applied Energy, Elsevier, vol. 188(C), pages 529-546.
    8. Han, Xiaoye & Yang, Zhenyi & Wang, Meiping & Tjong, Jimi & Zheng, Ming, 2017. "Clean combustion of n-butanol as a next generation biofuel for diesel engines," Applied Energy, Elsevier, vol. 198(C), pages 347-359.
    9. Benajes, J. & Martín, J. & Novella, R. & Thein, K., 2016. "Understanding the performance of the multiple injection gasoline partially premixed combustion concept implemented in a 2-Stroke high speed direct injection compression ignition engine," Applied Energy, Elsevier, vol. 161(C), pages 465-475.
    10. Viggiano, Annarita & Magi, Vinicio, 2012. "A comprehensive investigation on the emissions of ethanol HCCI engines," Applied Energy, Elsevier, vol. 93(C), pages 277-287.
    11. Bova, Sergio & Castiglione, Teresa & Piccione, Rocco & Pizzonia, Francesco, 2015. "A dynamic nucleate-boiling model for CO2 reduction in internal combustion engines," Applied Energy, Elsevier, vol. 143(C), pages 271-282.
    12. Pastor, J.V. & García-Oliver, J.M. & García, A. & Micó, C. & Durrett, R., 2013. "A spectroscopy study of gasoline partially premixed compression ignition spark assisted combustion," Applied Energy, Elsevier, vol. 104(C), pages 568-575.
    13. Benajes, J. & Novella, R. & De Lima, D. & Thein, K., 2017. "Impact of injection settings operating with the gasoline Partially Premixed Combustion concept in a 2-stroke HSDI compression ignition engine," Applied Energy, Elsevier, vol. 193(C), pages 515-530.
    14. Tang, Qinglong & Liu, Haifeng & Li, Mingkun & Yao, Mingfa, 2017. "Optical study of spray-wall impingement impact on early-injection gasoline partially premixed combustion at low engine load," Applied Energy, Elsevier, vol. 185(P1), pages 708-719.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. An, Yanzhao & Tang, Qinglong & Vallinayagam, Raman & Shi, Hao & Sim, Jaeheon & Chang, Junseok & Magnotti, Gaetano & Johansson, Bengt, 2019. "Combustion stability study of partially premixed combustion by high-pressure multiple injections with low-octane fuel," Applied Energy, Elsevier, vol. 248(C), pages 626-639.
    2. Pachiannan, Tamilselvan & Zhong, Wenjun & Rajkumar, Sundararajan & He, Zhixia & Leng, Xianying & Wang, Qian, 2019. "A literature review of fuel effects on performance and emission characteristics of low-temperature combustion strategies," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    3. Xingyu Liang & Ziyang Liu & Kun Wang & Xiaohui Wang & Zhijie Zhu & Chaoyang Xu & Bo Liu, 2021. "Impact of Pilot Injection on Combustion and Emission Characteristics of a Low-Speed Two-Stroke Marine Diesel Engine," Energies, MDPI, vol. 14(2), pages 1-20, January.
    4. Gong, Zhen & Feng, Liyan & Qu, Wenjing & Li, Lincheng & Wei, Lai, 2020. "Auto-ignition characteristics of methane/n-heptane mixtures under carbon dioxide and water dilution conditions," Applied Energy, Elsevier, vol. 278(C).
    5. Li, Jie & Fotouhi, Abbas & Liu, Yonggang & Zhang, Yuanjian & Chen, Zheng, 2024. "Review on eco-driving control for connected and automated vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    6. Zhang, Jibao & Zhang, Xin & Wang, Tao & Hou, Xiaosen, 2019. "A numerical study on jet characteristics under different supercritical conditions for engine applications," Applied Energy, Elsevier, vol. 252(C), pages 1-1.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yin, Lianhao & Turesson, Gabriel & Tunestål, Per & Johansson, Rolf, 2019. "Evaluation and transient control of an advanced multi-cylinder engine based on partially premixed combustion," Applied Energy, Elsevier, vol. 233, pages 1015-1026.
    2. Pachiannan, Tamilselvan & Zhong, Wenjun & Rajkumar, Sundararajan & He, Zhixia & Leng, Xianying & Wang, Qian, 2019. "A literature review of fuel effects on performance and emission characteristics of low-temperature combustion strategies," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    3. Zhou, Lei & Hua, Jianxiong & Wei, Haiqiao & Dong, Kai & Feng, Dengquan & Shu, Gequn, 2018. "Knock characteristics and combustion regime diagrams of multiple combustion modes based on experimental investigations," Applied Energy, Elsevier, vol. 229(C), pages 31-41.
    4. Zhao, Wenbin & Li, Zilong & Huang, Guan & Zhang, Yaoyuan & Qian, Yong & Lu, Xingcai, 2020. "Experimental investigation of direct injection dual fuel of n-butanol and biodiesel on Intelligent Charge Compression Ignition (ICCI) Combustion mode," Applied Energy, Elsevier, vol. 266(C).
    5. Xu, Leilei & Bai, Xue-Song & Li, Changle & Tunestål, Per & Tunér, Martin & Lu, Xingcai, 2019. "Combustion characteristics of gasoline DICI engine in the transition from HCCI to PPC: Experiment and numerical analysis," Energy, Elsevier, vol. 185(C), pages 922-937.
    6. Huang, Haozhong & Zhou, Chengzhong & Liu, Qingsheng & Wang, Qingxin & Wang, Xueqiang, 2016. "An experimental study on the combustion and emission characteristics of a diesel engine under low temperature combustion of diesel/gasoline/n-butanol blends," Applied Energy, Elsevier, vol. 170(C), pages 219-231.
    7. Fang, Cheng & Ouyang, Minggao & Tunestal, Per & Yang, Fuyuan & Yang, Xiaofan, 2018. "Closed-loop combustion phase control for multiple combustion modes by multiple injections in a compression ignition engine fueled by gasoline-diesel mixture," Applied Energy, Elsevier, vol. 231(C), pages 816-825.
    8. Andwari, Amin Mahmoudzadeh & Aziz, Azhar Abdul & Said, Mohd Farid Muhamad & Latiff, Zulkarnain Abdul, 2014. "Experimental investigation of the influence of internal and external EGR on the combustion characteristics of a controlled auto-ignition two-stroke cycle engine," Applied Energy, Elsevier, vol. 134(C), pages 1-10.
    9. Noh, Hyun Kwon & No, Soo-Young, 2017. "Effect of bioethanol on combustion and emissions in advanced CI engines: HCCI, PPC and GCI mode – A review," Applied Energy, Elsevier, vol. 208(C), pages 782-802.
    10. Benajes, J. & Novella, R. & De Lima, D. & Thein, K., 2017. "Impact of injection settings operating with the gasoline Partially Premixed Combustion concept in a 2-stroke HSDI compression ignition engine," Applied Energy, Elsevier, vol. 193(C), pages 515-530.
    11. Rami Y. Dahham & Haiqiao Wei & Jiaying Pan, 2022. "Improving Thermal Efficiency of Internal Combustion Engines: Recent Progress and Remaining Challenges," Energies, MDPI, vol. 15(17), pages 1-60, August.
    12. Zhong, Wenjun & Pachiannan, Tamilselvan & Li, Zilong & Qian, Yong & Zhang, Yanzhi & Wang, Qian & He, Zhixia & Lu, Xingcai, 2019. "Combustion and emission characteristics of gasoline/hydrogenated catalytic biodiesel blends in gasoline compression ignition engines under different loads of double injection strategies," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    13. Benajes, Jesús & Molina, Santiago & García, Antonio & Monsalve-Serrano, Javier, 2015. "Effects of low reactivity fuel characteristics and blending ratio on low load RCCI (reactivity controlled compression ignition) performance and emissions in a heavy-duty diesel engine," Energy, Elsevier, vol. 90(P2), pages 1261-1271.
    14. Chen, Hao & Su, Xin & He, Jingjing & Zhang, Peng & Xu, Hongming & Zhou, Chenglong, 2021. "Investigation on combustion characteristics of cyclopentanol/diesel fuel blends in an optical engine," Renewable Energy, Elsevier, vol. 167(C), pages 811-829.
    15. Neshat, Elaheh & Saray, Rahim Khoshbakhti & Hosseini, Vahid, 2016. "Effect of reformer gas blending on homogeneous charge compression ignition combustion of primary reference fuels using multi zone model and semi detailed chemical-kinetic mechanism," Applied Energy, Elsevier, vol. 179(C), pages 463-478.
    16. Ma, Shuaiying & Zheng, Zunqing & Liu, Haifeng & Zhang, Quanchang & Yao, Mingfa, 2013. "Experimental investigation of the effects of diesel injection strategy on gasoline/diesel dual-fuel combustion," Applied Energy, Elsevier, vol. 109(C), pages 202-212.
    17. Tang, Qinglong & Liu, Haifeng & Li, Mingkun & Yao, Mingfa, 2017. "Optical study of spray-wall impingement impact on early-injection gasoline partially premixed combustion at low engine load," Applied Energy, Elsevier, vol. 185(P1), pages 708-719.
    18. Zhang, F. & Yu, R. & Bai, X.S., 2015. "Effect of split fuel injection on heat release and pollutant emissions in partially premixed combustion of PRF70/air/EGR mixtures," Applied Energy, Elsevier, vol. 149(C), pages 283-296.
    19. Benajes, Jesús & García, Antonio & Pastor, José Manuel & Monsalve-Serrano, Javier, 2016. "Effects of piston bowl geometry on Reactivity Controlled Compression Ignition heat transfer and combustion losses at different engine loads," Energy, Elsevier, vol. 98(C), pages 64-77.
    20. Wei Tian & Hongchuan Zhang & Lenian Wang & Zhiqiang Han & Wenbin Yu, 2020. "Effect of Premixed n-Butanol Ratio on the Initial Stage of Combustion in a Light-Duty Butanol/Diesel Dual-Fuel Engine," Energies, MDPI, vol. 13(17), pages 1-10, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:233-234:y:2019:i::p:516-523. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.