IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v143y2015icp271-282.html
   My bibliography  Save this article

A dynamic nucleate-boiling model for CO2 reduction in internal combustion engines

Author

Listed:
  • Bova, Sergio
  • Castiglione, Teresa
  • Piccione, Rocco
  • Pizzonia, Francesco

Abstract

Improvements in cooling system efficiency are required in modern internal combustion engines (ICE). Optimal thermal management presents several advantages in terms of lower pump mechanical power, reduced friction losses and shorter warm-up time, which result in reduced fuel consumptions and CO2 emissions. These goals can be achieved by adopting lower coolant flow rates, which give rise to nucleate boiling regime. The key requirement for a precision cooling strategy is the capability of developing a reliable, model-based control of the cooling regime. However, there is no model of the cooling system of an SI engine, which identifies precisely the onset of the nucleate boiling. This work fills this void.

Suggested Citation

  • Bova, Sergio & Castiglione, Teresa & Piccione, Rocco & Pizzonia, Francesco, 2015. "A dynamic nucleate-boiling model for CO2 reduction in internal combustion engines," Applied Energy, Elsevier, vol. 143(C), pages 271-282.
  • Handle: RePEc:eee:appene:v:143:y:2015:i:c:p:271-282
    DOI: 10.1016/j.apenergy.2015.01.047
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626191500063X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2015.01.047?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bishop, Justin D.K. & Martin, Niall P.D. & Boies, Adam M., 2014. "Cost-effectiveness of alternative powertrains for reduced energy use and CO2 emissions in passenger vehicles," Applied Energy, Elsevier, vol. 124(C), pages 44-61.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Castiglione, Teresa & Pizzonia, Francesco & Piccione, Rocco & Bova, Sergio, 2016. "Detecting the onset of nucleate boiling in internal combustion engines," Applied Energy, Elsevier, vol. 164(C), pages 332-340.
    2. Di Battista, D. & Cipollone, R., 2016. "Experimental and numerical assessment of methods to reduce warm up time of engine lubricant oil," Applied Energy, Elsevier, vol. 162(C), pages 570-580.
    3. Teresa Castiglione & Pietropaolo Morrone & Luigi Falbo & Diego Perrone & Sergio Bova, 2020. "Application of a Model-Based Controller for Improving Internal Combustion Engines Fuel Economy," Energies, MDPI, vol. 13(5), pages 1-22, March.
    4. Yin, Lianhao & Lundgren, Marcus & Wang, Zhenkan & Stamatoglou, Panagiota & Richter, Mattias & Andersson, Öivind & Tunestål, Per, 2019. "High efficient internal combustion engine using partially premixed combustion with multiple injections," Applied Energy, Elsevier, vol. 233, pages 516-523.
    5. Jonas Müller & Nico Besser & Philipp Hermsen & Stefan Pischinger & Jürgen Knauf & Pooya Bagherzade & Johannes Fryjan & Andreas Balazs & Simon Gottorf, 2023. "Virtual Development of Advanced Thermal Management Functions Using Model-in-the-Loop Applications," Energies, MDPI, vol. 16(7), pages 1-26, April.
    6. Yin, Lianhao & Turesson, Gabriel & Tunestål, Per & Johansson, Rolf, 2019. "Evaluation and transient control of an advanced multi-cylinder engine based on partially premixed combustion," Applied Energy, Elsevier, vol. 233, pages 1015-1026.
    7. Junhong Zhang & Zhexuan Xu & Jiewei Lin & Zefeng Lin & Jingchao Wang & Tianshu Xu, 2018. "Thermal Characteristics Investigation of the Internal Combustion Engine Cooling-Combustion System Using Thermal Boundary Dynamic Coupling Method and Experimental Verification," Energies, MDPI, vol. 11(8), pages 1-20, August.
    8. Pizzonia, Francesco & Castiglione, Teresa & Bova, Sergio, 2016. "A Robust Model Predictive Control for efficient thermal management of internal combustion engines," Applied Energy, Elsevier, vol. 169(C), pages 555-566.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Di Battista, D. & Cipollone, R., 2016. "Experimental and numerical assessment of methods to reduce warm up time of engine lubricant oil," Applied Energy, Elsevier, vol. 162(C), pages 570-580.
    2. Angelo Bonfitto, 2020. "A Method for the Combined Estimation of Battery State of Charge and State of Health Based on Artificial Neural Networks," Energies, MDPI, vol. 13(10), pages 1-13, May.
    3. Choi, Hyunhong & Shin, Jungwoo & Woo, JongRoul, 2018. "Effect of electricity generation mix on battery electric vehicle adoption and its environmental impact," Energy Policy, Elsevier, vol. 121(C), pages 13-24.
    4. Donateo, T. & Licci, F. & D’Elia, A. & Colangelo, G. & Laforgia, D. & Ciancarelli, F., 2015. "Evaluation of emissions of CO2 and air pollutants from electric vehicles in Italian cities," Applied Energy, Elsevier, vol. 157(C), pages 675-687.
    5. Vasan, Arvind & Sood, Bhanu & Pecht, Michael, 2014. "Carbon footprinting of electronic products," Applied Energy, Elsevier, vol. 136(C), pages 636-648.
    6. Thiel, Christian & Nijs, Wouter & Simoes, Sofia & Schmidt, Johannes & van Zyl, Arnold & Schmid, Erwin, 2016. "The impact of the EU car CO2 regulation on the energy system and the role of electro-mobility to achieve transport decarbonisation," Energy Policy, Elsevier, vol. 96(C), pages 153-166.
    7. Dong, Guangyu & Morgan, Robert & Heikal, Morgan, 2015. "A novel split cycle internal combustion engine with integral waste heat recovery," Applied Energy, Elsevier, vol. 157(C), pages 744-753.
    8. Dimitrova, Zlatina & Maréchal, François, 2015. "Gasoline hybrid pneumatic engine for efficient vehicle powertrain hybridization," Applied Energy, Elsevier, vol. 151(C), pages 168-177.
    9. Dimitrova, Zlatina & Lourdais, Pierre & Maréchal, François, 2015. "Performance and economic optimization of an organic rankine cycle for a gasoline hybrid pneumatic powertrain," Energy, Elsevier, vol. 86(C), pages 574-588.
    10. Guo, Jiadong & Ge, Yunshan & Hao, Lijun & Tan, Jianwei & Peng, Zihang & Zhang, Chuanzhen, 2015. "Comparison of real-world fuel economy and emissions from parallel hybrid and conventional diesel buses fitted with selective catalytic reduction systems," Applied Energy, Elsevier, vol. 159(C), pages 433-441.
    11. Castiglione, Teresa & Pizzonia, Francesco & Piccione, Rocco & Bova, Sergio, 2016. "Detecting the onset of nucleate boiling in internal combustion engines," Applied Energy, Elsevier, vol. 164(C), pages 332-340.
    12. Dimitrova, Zlatina & Maréchal, François, 2016. "Techno–economic design of hybrid electric vehicles and possibilities of the multi-objective optimization structure," Applied Energy, Elsevier, vol. 161(C), pages 746-759.
    13. Bubeck, Steffen & Tomaschek, Jan & Fahl, Ulrich, 2016. "Perspectives of electric mobility: Total cost of ownership of electric vehicles in Germany," Transport Policy, Elsevier, vol. 50(C), pages 63-77.
    14. Danny Harvey, L.D., 2017. "Implications for the floor price of oil of aggressive climate policies," Energy Policy, Elsevier, vol. 108(C), pages 143-153.
    15. Sina, Naser & Nasiri, Sayyad & Karkhaneh, Vahid, 2015. "Effects of resistive loads and tire inflation pressure on tire power losses and CO2 emissions in real-world conditions," Applied Energy, Elsevier, vol. 157(C), pages 974-983.
    16. Björnsson, Lars-Henrik & Karlsson, Sten, 2015. "Plug-in hybrid electric vehicles: How individual movement patterns affect battery requirements, the potential to replace conventional fuels, and economic viability," Applied Energy, Elsevier, vol. 143(C), pages 336-347.
    17. Wang, Sinan & Chen, Kangda & Zhao, Fuquan & Hao, Han, 2019. "Technology pathways for complying with Corporate Average Fuel Consumption regulations up to 2030: A case study of China," Applied Energy, Elsevier, vol. 241(C), pages 257-277.
    18. Moradkhani, Mohammad Amin & Hosseini, Seyyed Hossein & Song, Mengjie & Teimoori, Khalil, 2024. "Comprehensive data-driven methods for estimating the thermal conductivity of biodiesels and their blends with alcohols and fossil diesels," Renewable Energy, Elsevier, vol. 221(C).
    19. Sadiqa Jafari & Zeinab Shahbazi & Yung-Cheol Byun, 2022. "Lithium-Ion Battery Health Prediction on Hybrid Vehicles Using Machine Learning Approach," Energies, MDPI, vol. 15(13), pages 1-16, June.
    20. Joshua Allwright & Akhlaqur Rahman & Marcus Coleman & Ambarish Kulkarni, 2022. "Heavy Multi-Articulated Vehicles with Electric and Hybrid Power Trains for Road Freight Activity: An Australian Context," Energies, MDPI, vol. 15(17), pages 1-19, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:143:y:2015:i:c:p:271-282. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.