IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v149y2015icp283-296.html
   My bibliography  Save this article

Effect of split fuel injection on heat release and pollutant emissions in partially premixed combustion of PRF70/air/EGR mixtures

Author

Listed:
  • Zhang, F.
  • Yu, R.
  • Bai, X.S.

Abstract

Two- and three-dimensional direct numerical simulations are performed to study the combustion process of PRF70/air/exhaust gas mixtures under partially premixed combustion (PPC) conditions relevant to modern low temperature internal combustion engines. The aim is to gain improved understanding of the underlining physics in PPC engines. A skeletal PRF chemical kinetic mechanism is used together with full transport properties. The 2D and 3D numerical simulations are performed on respectively a 0.614×0.614mm2 domain and a 0.614×0.614×0.614mm3 domain with a 1.2μm cell size. The results reveal the effects of the split of the fuel mass in different injections on the combustion and emission process in PPC engines. Increasing the amount of second fuel injection results in a retarded heat release and decreased NO emission, however, increased CO emission. While this CO/NOx tradeoff has been observed in previous PPC engine experiments the fundamental reason for this is clarified here. PPC is shown to consist of a two-stage combustion process: in the first stage the stratified fuel/air mixture auto-ignites, which results in partial oxidation of the fuel in the fuel-rich region and a mixture of radicals and hot products in the fuel-lean region. In the second stage the partially oxidized fuel/air mixture is oxidized in a thin diffusion flame where the diffusion and chemical reaction both play an important role. The split of fuel mass in different injections essentially affect the amount of fuel/air in the fuel-lean region and the fuel-rich region, thereby the relative importance of the diffusion flame. This in turn affects the emissions of NO and CO. The effects of turbulence on the heat release rate, pressure-rise-rate and emissions are a manifestation of the change of the reaction zone structures. At high turbulence intensities and large integral lengths a more homogeneous mixture is achieved, which promotes the volumetric ignition stage, speeds up the heat release rate, increases the pressure-rise-rate, and increases the NO formation and CO oxidation rates. The existence of both volumetric ignition and diffusion flame in PPC poses a great challenge for numerical simulations of PPC engines.

Suggested Citation

  • Zhang, F. & Yu, R. & Bai, X.S., 2015. "Effect of split fuel injection on heat release and pollutant emissions in partially premixed combustion of PRF70/air/EGR mixtures," Applied Energy, Elsevier, vol. 149(C), pages 283-296.
  • Handle: RePEc:eee:appene:v:149:y:2015:i:c:p:283-296
    DOI: 10.1016/j.apenergy.2015.03.058
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261915003426
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2015.03.058?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Benajes, Jesús & Molina, Santiago & García, Antonio & Monsalve-Serrano, Javier & Durrett, Russell, 2014. "Conceptual model description of the double injection strategy applied to the gasoline partially premixed compression ignition combustion concept with spark assistance," Applied Energy, Elsevier, vol. 129(C), pages 1-9.
    2. Benajes, J. & Molina, S. & Novella, R. & De Lima, D., 2014. "Implementation of the Partially Premixed Combustion concept in a 2-stroke HSDI diesel engine fueled with gasoline," Applied Energy, Elsevier, vol. 122(C), pages 94-111.
    3. Ma, Shuaiying & Zheng, Zunqing & Liu, Haifeng & Zhang, Quanchang & Yao, Mingfa, 2013. "Experimental investigation of the effects of diesel injection strategy on gasoline/diesel dual-fuel combustion," Applied Energy, Elsevier, vol. 109(C), pages 202-212.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. An, Yanzhao & Jaasim, Mohammed & Raman, Vallinayagam & Hernández Pérez, Francisco E. & Sim, Jaeheon & Chang, Junseok & Im, Hong G. & Johansson, Bengt, 2018. "Homogeneous charge compression ignition (HCCI) and partially premixed combustion (PPC) in compression ignition engine with low octane gasoline," Energy, Elsevier, vol. 158(C), pages 181-191.
    2. Zhang, Miao & Derafshzan, Saeed & Richter, Mattias & Lundgren, Marcus, 2020. "Effects of different injection strategies on ignition and combustion characteristics in an optical PPC engine," Energy, Elsevier, vol. 203(C).
    3. Xu, Leilei & Treacy, Mark & Zhang, Yan & Aziz, Amir & Tuner, Martin & Bai, Xue-Song, 2022. "Comparison of efficiency and emission characteristics in a direct-injection compression ignition engine fuelled with iso-octane and methanol under low temperature combustion conditions," Applied Energy, Elsevier, vol. 312(C).
    4. Xu, Leilei & Bai, Xue-Song & Li, Changle & Tunestål, Per & Tunér, Martin & Lu, Xingcai, 2019. "Combustion characteristics of gasoline DICI engine in the transition from HCCI to PPC: Experiment and numerical analysis," Energy, Elsevier, vol. 185(C), pages 922-937.
    5. Cheng, Xinwei & Gan, Suyin & Ng, Hoon Kiat, 2020. "A numerical study on the quasi-steady spray and soot characteristics for soybean methyl ester and its blends with ethanol using CFD-reduced chemical kinetics approach," Energy, Elsevier, vol. 200(C).
    6. Rickard Solsjö & Mehdi Jangi & Bengt Johansson & Xue-Song Bai, 2020. "The Role of Multiple Injections on Combustion in a Light-Duty PPC Engine," Energies, MDPI, vol. 13(21), pages 1-18, October.
    7. Yin, Lianhao & Turesson, Gabriel & Tunestål, Per & Johansson, Rolf, 2019. "Evaluation and transient control of an advanced multi-cylinder engine based on partially premixed combustion," Applied Energy, Elsevier, vol. 233, pages 1015-1026.
    8. Jafarmadar, Samad & Nemati, Peyman, 2015. "Numerical investigation of the effect split injection scheme on exergy terms in an IDI (indirect injection) diesel engine by three dimensional modeling," Energy, Elsevier, vol. 93(P2), pages 2280-2291.
    9. Xiao, Gang & Jia, Ming & Wang, Tianyou, 2016. "Large eddy simulation of n-heptane spray combustion in partially premixed combustion regime with linear eddy model," Energy, Elsevier, vol. 97(C), pages 20-35.
    10. Zhao, Wenbin & Li, Zilong & Huang, Guan & Zhang, Yaoyuan & Qian, Yong & Lu, Xingcai, 2020. "Experimental investigation of direct injection dual fuel of n-butanol and biodiesel on Intelligent Charge Compression Ignition (ICCI) Combustion mode," Applied Energy, Elsevier, vol. 266(C).
    11. Payri, Raúl & Salvador, F.J. & Manin, Julien & Viera, Alberto, 2016. "Diesel ignition delay and lift-off length through different methodologies using a multi-hole injector," Applied Energy, Elsevier, vol. 162(C), pages 541-550.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yin, Lianhao & Lundgren, Marcus & Wang, Zhenkan & Stamatoglou, Panagiota & Richter, Mattias & Andersson, Öivind & Tunestål, Per, 2019. "High efficient internal combustion engine using partially premixed combustion with multiple injections," Applied Energy, Elsevier, vol. 233, pages 516-523.
    2. Yin, Lianhao & Turesson, Gabriel & Tunestål, Per & Johansson, Rolf, 2019. "Evaluation and transient control of an advanced multi-cylinder engine based on partially premixed combustion," Applied Energy, Elsevier, vol. 233, pages 1015-1026.
    3. Huang, Haozhong & Zhou, Chengzhong & Liu, Qingsheng & Wang, Qingxin & Wang, Xueqiang, 2016. "An experimental study on the combustion and emission characteristics of a diesel engine under low temperature combustion of diesel/gasoline/n-butanol blends," Applied Energy, Elsevier, vol. 170(C), pages 219-231.
    4. Liu, Xinlei & Wang, Hu & Wang, Xiaofeng & Zheng, Zunqing & Yao, Mingfa, 2017. "Experimental and modelling investigations of the diesel surrogate fuels in direct injection compression ignition combustion," Applied Energy, Elsevier, vol. 189(C), pages 187-200.
    5. Andwari, Amin Mahmoudzadeh & Aziz, Azhar Abdul & Said, Mohd Farid Muhamad & Latiff, Zulkarnain Abdul, 2014. "Experimental investigation of the influence of internal and external EGR on the combustion characteristics of a controlled auto-ignition two-stroke cycle engine," Applied Energy, Elsevier, vol. 134(C), pages 1-10.
    6. Wang, Xinyan & Zhao, Hua & Xie, Hui, 2016. "Effect of dilution strategies and direct injection ratios on stratified flame ignition (SFI) hybrid combustion in a PFI/DI gasoline engine," Applied Energy, Elsevier, vol. 165(C), pages 801-814.
    7. Fan, Baowei & Pan, Jianfeng & Yang, Wenming & Chen, Wei & Bani, Stephen, 2017. "The influence of injection strategy on mixture formation and combustion process in a direct injection natural gas rotary engine," Applied Energy, Elsevier, vol. 187(C), pages 663-674.
    8. Li, Zilong & Zhang, Yaoyuan & Huang, Guan & Zhao, Wenbin & He, Zhuoyao & Qian, Yong & Lu, Xingcai, 2020. "Control of intake boundary conditions for enabling clean combustion in variable engine conditions under intelligent charge compression ignition (ICCI) mode," Applied Energy, Elsevier, vol. 274(C).
    9. Pachiannan, Tamilselvan & Zhong, Wenjun & Rajkumar, Sundararajan & He, Zhixia & Leng, Xianying & Wang, Qian, 2019. "A literature review of fuel effects on performance and emission characteristics of low-temperature combustion strategies," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    10. Benajes, J. & Novella, R. & De Lima, D. & Thein, K., 2017. "Impact of injection settings operating with the gasoline Partially Premixed Combustion concept in a 2-stroke HSDI compression ignition engine," Applied Energy, Elsevier, vol. 193(C), pages 515-530.
    11. Xinda Zhu & Manu Mannazhi & Natascia Palazzo & Per-Erik Bengtsson & Öivind Andersson, 2020. "High-Speed Imaging of Spray Formation and Combustion in an Optical Engine: Effects of Injector Aging and TPGME as a Fuel Additive," Energies, MDPI, vol. 13(12), pages 1-26, June.
    12. Dong, Shijun & Wang, Zhaowen & Yang, Can & Ou, Biao & Lu, Hongguang & Xu, Haocheng & Cheng, Xiaobei, 2018. "Investigations on the effects of fuel stratification on auto-ignition and combustion process of an ethanol/diesel dual-fuel engine," Applied Energy, Elsevier, vol. 230(C), pages 19-30.
    13. Benajes, J. & Martín, J. & Novella, R. & Thein, K., 2016. "Understanding the performance of the multiple injection gasoline partially premixed combustion concept implemented in a 2-Stroke high speed direct injection compression ignition engine," Applied Energy, Elsevier, vol. 161(C), pages 465-475.
    14. Zhong, Yingzi & Han, Weiqiang & Jin, Chao & Tian, Xiaocong & Liu, Haifeng, 2022. "Study on effects of the hydroxyl group position and carbon chain length on combustion and emission characteristics of Reactivity Controlled Compression Ignition (RCCI) engine fueled with low-carbon st," Energy, Elsevier, vol. 239(PC).
    15. Chen, Guisheng & Di, Lei & Zhang, Quanchang & Zheng, Zunqing & Zhang, Wei, 2015. "Effects of 2,5-dimethylfuran fuel properties coupling with EGR (exhaust gas recirculation) on combustion and emission characteristics in common-rail diesel engines," Energy, Elsevier, vol. 93(P1), pages 284-293.
    16. Paykani, Amin & Kakaee, Amir-Hasan & Rahnama, Pourya & Reitz, Rolf D., 2015. "Effects of diesel injection strategy on natural gas/diesel reactivity controlled compression ignition combustion," Energy, Elsevier, vol. 90(P1), pages 814-826.
    17. Jia, Guorui & Wang, Hu & Tong, Laihui & Wang, Xiaofeng & Zheng, Zunqing & Yao, Mingfa, 2017. "Experimental and numerical studies on three gasoline surrogates applied in gasoline compression ignition (GCI) mode," Applied Energy, Elsevier, vol. 192(C), pages 59-70.
    18. Benajes, Jesús & Molina, Santiago & García, Antonio & Monsalve-Serrano, Javier, 2015. "Effects of low reactivity fuel characteristics and blending ratio on low load RCCI (reactivity controlled compression ignition) performance and emissions in a heavy-duty diesel engine," Energy, Elsevier, vol. 90(P2), pages 1261-1271.
    19. Wang, Yang & Wei, Lixia & Yao, Mingfa, 2016. "A theoretical investigation of the effects of the low-temperature reforming products on the combustion of n-heptane in an HCCI engine and a constant volume vessel," Applied Energy, Elsevier, vol. 181(C), pages 132-139.
    20. Khayum, Naseem & Anbarasu, S. & Murugan, S., 2021. "Optimization of fuel injection parameters and compression ratio of a biogas fueled diesel engine using methyl esters of waste cooking oil as a pilot fuel," Energy, Elsevier, vol. 221(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:149:y:2015:i:c:p:283-296. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.