Electrochemical analysis of high-performance protonic ceramic fuel cells based on a columnar-structured thin electrolyte
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2018.10.043
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Sihyuk Choi & Chris J. Kucharczyk & Yangang Liang & Xiaohang Zhang & Ichiro Takeuchi & Ho-Il Ji & Sossina M. Haile, 2018. "Exceptional power density and stability at intermediate temperatures in protonic ceramic fuel cells," Nature Energy, Nature, vol. 3(3), pages 202-210, March.
- Chuancheng Duan & Robert J. Kee & Huayang Zhu & Canan Karakaya & Yachao Chen & Sandrine Ricote & Angelique Jarry & Ethan J. Crumlin & David Hook & Robert Braun & Neal P. Sullivan & Ryan O’Hayre, 2018. "Highly durable, coking and sulfur tolerant, fuel-flexible protonic ceramic fuel cells," Nature, Nature, vol. 557(7704), pages 217-222, May.
- Kiho Bae & Dong Young Jang & Hyung Jong Choi & Donghwan Kim & Jongsup Hong & Byung-Kook Kim & Jong-Ho Lee & Ji-Won Son & Joon Hyung Shim, 2017. "Demonstrating the potential of yttrium-doped barium zirconate electrolyte for high-performance fuel cells," Nature Communications, Nature, vol. 8(1), pages 1-9, April.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Chen, Yu & Lu, Minyi & Yang, Huazheng & Yao, Yingbang & Tao, Tao & Lu, Shengguo & Wang, Chao & Ramesh, Rajendran & Kendall, Michaela & Kendall, Kevin & Ouyang, Xiaoping & Liang, Bo, 2020. "80 Hours operation of a tubular solid oxide fuel cell using propane/air," Applied Energy, Elsevier, vol. 272(C).
- Thieu, Cam-Anh & Ji, Ho-Il & Kim, Hyoungchul & Yoon, Kyung Joong & Lee, Jong-Ho & Son, Ji-Won, 2019. "Palladium incorporation at the anode of thin-film solid oxide fuel cells and its effect on direct utilization of butane fuel at 600 °C," Applied Energy, Elsevier, vol. 243(C), pages 155-164.
- Danilov, Nikolay & Lyagaeva, Julia & Vdovin, Gennady & Medvedev, Dmitry, 2019. "Multifactor performance analysis of reversible solid oxide cells based on proton-conducting electrolytes," Applied Energy, Elsevier, vol. 237(C), pages 924-934.
- Shah, M.A.K. Yousaf & Lu, Yuzheng & Mushtaq, Naveed & Yousaf, Muhammad & Akbar, Nabeela & Xia, Chen & Yun, Sining & Zhu, Bin, 2023. "Semiconductor-membrane fuel cell (SMFC) for renewable energy technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Kim, J. & Sengodan, S. & Kim, S. & Kwon, O. & Bu, Y. & Kim, G., 2019. "Proton conducting oxides: A review of materials and applications for renewable energy conversion and storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 606-618.
- Chang, Wanhyuk & Kang, Eun Heui & Jeong, Heon Jun & Choi, Wonjoon & Shim, Joon Hyung, 2023. "Inkjet printing of perovskite ceramics for high-performance proton ceramic fuel cells," Energy, Elsevier, vol. 268(C).
- Thieu, Cam-Anh & Ji, Ho-Il & Kim, Hyoungchul & Yoon, Kyung Joong & Lee, Jong-Ho & Son, Ji-Won, 2019. "Palladium incorporation at the anode of thin-film solid oxide fuel cells and its effect on direct utilization of butane fuel at 600 °C," Applied Energy, Elsevier, vol. 243(C), pages 155-164.
- Kai Pei & Yucun Zhou & Kang Xu & Hua Zhang & Yong Ding & Bote Zhao & Wei Yuan & Kotaro Sasaki & YongMan Choi & Yu Chen & Meilin Liu, 2022. "Surface restructuring of a perovskite-type air electrode for reversible protonic ceramic electrochemical cells," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
- Danilov, Nikolay & Lyagaeva, Julia & Vdovin, Gennady & Medvedev, Dmitry, 2019. "Multifactor performance analysis of reversible solid oxide cells based on proton-conducting electrolytes," Applied Energy, Elsevier, vol. 237(C), pages 924-934.
- Rasaki, S.A. & Liu, C. & Lao, C. & Zhang, H. & Chen, Z., 2021. "The innovative contribution of additive manufacturing towards revolutionizing fuel cell fabrication for clean energy generation: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
- Fan Liu & Chuancheng Duan, 2021. "Direct-Hydrocarbon Proton-Conducting Solid Oxide Fuel Cells," Sustainability, MDPI, vol. 13(9), pages 1-9, April.
- Guk, Erdogan & Venkatesan, Vijay & Babar, Shumaila & Jackson, Lisa & Kim, Jung-Sik, 2019. "Parameters and their impacts on the temperature distribution and thermal gradient of solid oxide fuel cell," Applied Energy, Elsevier, vol. 241(C), pages 164-173.
- Zuoqing Liu & Yuesheng Bai & Hainan Sun & Daqin Guan & Wenhuai Li & Wei-Hsiang Huang & Chih-Wen Pao & Zhiwei Hu & Guangming Yang & Yinlong Zhu & Ran Ran & Wei Zhou & Zongping Shao, 2024. "Synergistic dual-phase air electrode enables high and durable performance of reversible proton ceramic electrochemical cells," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
- Ze Liu & Yufei Song & Xiaolu Xiong & Yuxuan Zhang & Jingzeng Cui & Jianqiu Zhu & Lili Li & Jing Zhou & Chuan Zhou & Zhiwei Hu & Guntae Kim & Francesco Ciucci & Zongping Shao & Jian-Qiang Wang & Linjua, 2023. "Sintering-induced cation displacement in protonic ceramics and way for its suppression," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
- Mohamad Fairus Rabuni & Tao Li & Mohd Hafiz Dzarfan Othman & Faidzul Hakim Adnan & Kang Li, 2023. "Progress in Solid Oxide Fuel Cells with Hydrocarbon Fuels," Energies, MDPI, vol. 16(17), pages 1-36, September.
- Qaisar Abbas & Mojtaba Mirzaeian & Michael R.C. Hunt & Peter Hall & Rizwan Raza, 2020. "Current State and Future Prospects for Electrochemical Energy Storage and Conversion Systems," Energies, MDPI, vol. 13(21), pages 1-41, November.
- Luo, Yu & Liao, Shuting & Chen, Shuai & Fang, Huihuang & Zhong, Fulan & Lin, Li & Zhou, Chen & Chen, Chongqi & Cai, Guohui & Au, Chak-Tong & Jiang, Lilong, 2022. "Optimized coupling of ammonia decomposition and electrochemical oxidation in a tubular direct ammonia solid oxide fuel cell for high-efficiency power generation," Applied Energy, Elsevier, vol. 307(C).
- Hu, Enyi & Wang, Faze & Yousaf, Muhammad & Wang, Jun & Lund, Peter & Wang, Jinping & Zhu, Bin, 2022. "Synergistic effect of sodium content for tuning Sm2O3 as a stable electrolyte in proton ceramic fuel cells," Renewable Energy, Elsevier, vol. 193(C), pages 608-616.
- Serdar Yilmaz & Bekir Kavici & Prakash Ramakrishnan & Cigdem Celen & Bahman Amini Horri, 2023. "Highly Conductive Cerium- and Neodymium-Doped Barium Zirconate Perovskites for Protonic Ceramic Fuel Cells," Energies, MDPI, vol. 16(11), pages 1-14, May.
- Wang, Chaoqi & Lü, Zhe & Li, Jingwei & Cao, Zhiqun & Wei, Bo & Li, Huan & Shang, Minghao & Su, Chaoxiang, 2020. "Efficient use of waste carton for power generation, tar and fertilizer through direct carbon solid oxide fuel cell," Renewable Energy, Elsevier, vol. 158(C), pages 410-420.
- Pan, Zehua & Shen, Jian & Wang, Jingyi & Xu, Xinhai & Chan, Wei Ping & Liu, Siyu & Zhou, Yexin & Yan, Zilin & Jiao, Zhenjun & Lim, Teik-Thye & Zhong, Zheng, 2022. "Thermodynamic analyses of a standalone diesel-fueled distributed power generation system based on solid oxide fuel cells," Applied Energy, Elsevier, vol. 308(C).
- Shah, M.A.K. Yousaf & Lu, Yuzheng & Mushtaq, Naveed & Yousaf, Muhammad & Akbar, Nabeela & Xia, Chen & Yun, Sining & Zhu, Bin, 2023. "Semiconductor-membrane fuel cell (SMFC) for renewable energy technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
- Hong Zhang & Zuobin Zhang & Zhou Li & Hongjie Han & Weiguo Song & Jianxin Yi, 2023. "A chemiresistive-potentiometric multivariate sensor for discriminative gas detection," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
- Hizkia Manuel Vieri & Moo-Chang Kim & Arash Badakhsh & Sun Hee Choi, 2024. "Electrochemical Synthesis of Ammonia via Nitrogen Reduction and Oxygen Evolution Reactions—A Comprehensive Review on Electrolyte-Supported Cells," Energies, MDPI, vol. 17(2), pages 1-14, January.
More about this item
Keywords
Proton conducting oxides; Protonic ceramic fuel cells; Distribution of relaxation time method; Electrode reaction;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:233-234:y:2019:i::p:29-36. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.