IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v378y2025ipbs0306261924022992.html
   My bibliography  Save this article

400 °C operable SOFCs based on ceria electrolyte for powering wireless sensor in internet of things

Author

Listed:
  • Akbar, Muhammad
  • An, Qi
  • Ye, Yulian
  • Wu, Lichao
  • Wu, Chang
  • Bu, Tianlong
  • Dong, Wenjing
  • Wang, Xunying
  • Wang, Baoyuan
  • Wang, Hao
  • Xia, Chen

Abstract

Solid oxide fuel cells (SOFCs) can generate high-efficiency and clean power but face a high-temperature bottleneck that hinders their widespread application. If alternative electrolytes can be developed to reduce the operating temperatures, the application of SOFCs will possibly be expanded to more scenarios, such as power sources for the Internet of Things (IoT). Herein, as a proof of the concept, a 400 °C operable SOFC is developed based on a precipitation-method prepared CeO2 electrolyte for powering wireless sensor in IoT system. Material studies indicate the CeO2 electrolyte sample forms a coating structure with a thin layer of amorphous carbonate covering the surface of CeO2 particles, which could result in fast hybrid proton and oxygen ion transport. The fabricated CeO2 electrolyte-based SOFCs exhibit promising power densities of 0.275–0.650 W cm−2 with open circuit voltages of 1.04–1.11 V at 400–500 °C, indicative of feasible cell operation at 400 °C. It is also found the cell has high repeatability and good stability for 150 h under different current densities. With the aid of a power management unit, the developed SOFC is further applied to charge a supercapacitor, for powering a customized IoT system to monitor environmental parameters. The charge process is fast and stable. Our study thus developed a 400 °C operable SOFC based on CeO2 electrolyte and demonstrates the feasibility of SOFC as power sources for LoT technology for the first time.

Suggested Citation

  • Akbar, Muhammad & An, Qi & Ye, Yulian & Wu, Lichao & Wu, Chang & Bu, Tianlong & Dong, Wenjing & Wang, Xunying & Wang, Baoyuan & Wang, Hao & Xia, Chen, 2025. "400 °C operable SOFCs based on ceria electrolyte for powering wireless sensor in internet of things," Applied Energy, Elsevier, vol. 378(PB).
  • Handle: RePEc:eee:appene:v:378:y:2025:i:pb:s0306261924022992
    DOI: 10.1016/j.apenergy.2024.124916
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924022992
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.124916?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:378:y:2025:i:pb:s0306261924022992. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.