Synergistic dual-phase air electrode enables high and durable performance of reversible proton ceramic electrochemical cells
Author
Abstract
Suggested Citation
DOI: 10.1038/s41467-024-44767-5
Download full text from publisher
References listed on IDEAS
- Zongping Shao & Sossina M. Haile, 2004. "A high-performance cathode for the next generation of solid-oxide fuel cells," Nature, Nature, vol. 431(7005), pages 170-173, September.
- Daqin Guan & Gihun Ryu & Zhiwei Hu & Jing Zhou & Chung-Li Dong & Yu-Cheng Huang & Kaifeng Zhang & Yijun Zhong & Alexander C. Komarek & Ming Zhu & Xinhao Wu & Chih-Wen Pao & Chung-Kai Chang & Hong-Ji L, 2020. "Utilizing ion leaching effects for achieving high oxygen-evolving performance on hybrid nanocomposite with self-optimized behaviors," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
- Houfu Lv & Le Lin & Xiaomin Zhang & Rongtan Li & Yuefeng Song & Hiroaki Matsumoto & Na Ta & Chaobin Zeng & Qiang Fu & Guoxiong Wang & Xinhe Bao, 2021. "Promoting exsolution of RuFe alloy nanoparticles on Sr2Fe1.4Ru0.1Mo0.5O6−δ via repeated redox manipulations for CO2 electrolysis," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
- Kai Pei & Yucun Zhou & Kang Xu & Hua Zhang & Yong Ding & Bote Zhao & Wei Yuan & Kotaro Sasaki & YongMan Choi & Yu Chen & Meilin Liu, 2022. "Surface restructuring of a perovskite-type air electrode for reversible protonic ceramic electrochemical cells," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
- Sihyuk Choi & Chris J. Kucharczyk & Yangang Liang & Xiaohang Zhang & Ichiro Takeuchi & Ho-Il Ji & Sossina M. Haile, 2018. "Exceptional power density and stability at intermediate temperatures in protonic ceramic fuel cells," Nature Energy, Nature, vol. 3(3), pages 202-210, March.
- Chuancheng Duan & Robert Kee & Huayang Zhu & Neal Sullivan & Liangzhu Zhu & Liuzhen Bian & Dylan Jennings & Ryan O’Hayre, 2019. "Highly efficient reversible protonic ceramic electrochemical cells for power generation and fuel production," Nature Energy, Nature, vol. 4(3), pages 230-240, March.
- Gómez, Sergio Yesid & Hotza, Dachamir, 2016. "Current developments in reversible solid oxide fuel cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 155-174.
- Wenjuan Bian & Wei Wu & Baoming Wang & Wei Tang & Meng Zhou & Congrui Jin & Hanping Ding & Weiwei Fan & Yanhao Dong & Ju Li & Dong Ding, 2022. "Revitalizing interface in protonic ceramic cells by acid etch," Nature, Nature, vol. 604(7906), pages 479-485, April.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Ze Liu & Yufei Song & Xiaolu Xiong & Yuxuan Zhang & Jingzeng Cui & Jianqiu Zhu & Lili Li & Jing Zhou & Chuan Zhou & Zhiwei Hu & Guntae Kim & Francesco Ciucci & Zongping Shao & Jian-Qiang Wang & Linjua, 2023. "Sintering-induced cation displacement in protonic ceramics and way for its suppression," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
- Lei, Libin & Mo, Yingyu & Huang, Yue & Qiu, Ruiming & Tian, Zhipeng & Wang, Junyao & Liu, Jianping & Chen, Ying & Zhang, Jihao & Tao, Zetian & Liang, Bo & Wang, Chao, 2023. "Revealing and quantifying the role of oxygen-ionic current in proton-conducting solid oxide fuel cells: A modeling study," Energy, Elsevier, vol. 276(C).
- Serdar Yilmaz & Bekir Kavici & Prakash Ramakrishnan & Cigdem Celen & Bahman Amini Horri, 2023. "Highly Conductive Cerium- and Neodymium-Doped Barium Zirconate Perovskites for Protonic Ceramic Fuel Cells," Energies, MDPI, vol. 16(11), pages 1-14, May.
- Chang, Wanhyuk & Kang, Eun Heui & Jeong, Heon Jun & Choi, Wonjoon & Shim, Joon Hyung, 2023. "Inkjet printing of perovskite ceramics for high-performance proton ceramic fuel cells," Energy, Elsevier, vol. 268(C).
- Hong Zhang & Zuobin Zhang & Zhou Li & Hongjie Han & Weiguo Song & Jianxin Yi, 2023. "A chemiresistive-potentiometric multivariate sensor for discriminative gas detection," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
- Kyungpyo Hong & Mingi Choi & Yonggyun Bae & Jihong Min & Jaeyeob Lee & Donguk Kim & Sehee Bang & Han-Koo Lee & Wonyoung Lee & Jongsup Hong, 2023. "Direct methane protonic ceramic fuel cells with self-assembled Ni-Rh bimetallic catalyst," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
- Kai Pei & Yucun Zhou & Kang Xu & Hua Zhang & Yong Ding & Bote Zhao & Wei Yuan & Kotaro Sasaki & YongMan Choi & Yu Chen & Meilin Liu, 2022. "Surface restructuring of a perovskite-type air electrode for reversible protonic ceramic electrochemical cells," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
- Danilov, Nikolay & Lyagaeva, Julia & Vdovin, Gennady & Medvedev, Dmitry, 2019. "Multifactor performance analysis of reversible solid oxide cells based on proton-conducting electrolytes," Applied Energy, Elsevier, vol. 237(C), pages 924-934.
- Fan Liu & Chuancheng Duan, 2021. "Direct-Hydrocarbon Proton-Conducting Solid Oxide Fuel Cells," Sustainability, MDPI, vol. 13(9), pages 1-9, April.
- Kei Saito & Masatomo Yashima, 2023. "High proton conductivity within the ‘Norby gap’ by stabilizing a perovskite with disordered intrinsic oxygen vacancies," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
- Razmi, Amir Reza & Hanifi, Amir Reza & Shahbakhti, Mahdi, 2023. "Design, thermodynamic, and economic analyses of a green hydrogen storage concept based on solid oxide electrolyzer/fuel cells and heliostat solar field," Renewable Energy, Elsevier, vol. 215(C).
- Lv, Xiuqing & Chen, Huili & Zhou, Wei & Li, Si-Dian & Cheng, Fangqin & Shao, Zongping, 2022. "SrCo0.4Fe0.4Zr0.1Y0.1O3-δ, A new CO2 tolerant cathode for proton-conducting solid oxide fuel cells," Renewable Energy, Elsevier, vol. 185(C), pages 8-16.
- Gómez, Sergio Yesid & Hotza, Dachamir, 2016. "Current developments in reversible solid oxide fuel cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 155-174.
- Pan, Zehua & Liu, Qinglin & Zhang, Lan & Zhou, Juan & Zhang, Caizhi & Chan, Siew Hwa, 2017. "Experimental and thermodynamic study on the performance of water electrolysis by solid oxide electrolyzer cells with Nb-doped Co-based perovskite anode," Applied Energy, Elsevier, vol. 191(C), pages 559-567.
- Vinoth Kumar, R. & Khandale, A.P., 2022. "A review on recent progress and selection of cobalt-based cathode materials for low temperature-solid oxide fuel cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
- Sun, Yi & Qian, Tang & Zhu, Jingdong & Zheng, Nan & Han, Yu & Xiao, Gang & Ni, Meng & Xu, Haoran, 2023. "Dynamic simulation of a reversible solid oxide cell system for efficient H2 production and power generation," Energy, Elsevier, vol. 263(PA).
- Bo-Wen Zhang & Meng-Nan Zhu & Min-Rui Gao & Xiuan Xi & Nanqi Duan & Zhou Chen & Ren-Fei Feng & Hongbo Zeng & Jing-Li Luo, 2022. "Boosting the stability of perovskites with exsolved nanoparticles by B-site supplement mechanism," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
- Edoardo Magnone, 2014. "A novel graphical representation of sentence complexity: the description and its application," Scientometrics, Springer;Akadémiai Kiadó, vol. 98(2), pages 1301-1329, February.
- Zhao, Wenjuan & Lin, Bin & Wang, Hao & Wang, Faze & Asghar, Muhammad Imran & Wang, Jun & Zhu, Bin & Lund, Peter, 2024. "A half-metallic heterostructure fuel cell with high performance," Renewable Energy, Elsevier, vol. 232(C).
- Gür, Turgut M., 2024. "Giga-ton and tera-watt scale challenges at the energy - climate crossroads: A global perspective," Energy, Elsevier, vol. 290(C).
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-44767-5. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.