IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v206y2017icp959-971.html
   My bibliography  Save this article

Nox conversion efficiency optimization based on NSGA-II and state-feedback nonlinear model predictive control of selective catalytic reduction system in diesel engine

Author

Listed:
  • Wei, Li
  • Yan, Fuwu
  • Hu, Jie
  • Xi, Guangwei
  • Liu, Bo
  • Zeng, Jiawei

Abstract

The selective catalytic reduction (SCR) technology is a promising diesel after-treatment technology due to its high NOx reduction potential. A nonlinear model predictive control (NMPC) approach was proposed based on the three-state SCR model here for control and optimization of SCR system to maximize NOx reduction while minimizing NH3 slip and urea consumption; moreover, the ammonia coverage ratio was designed to asa control target, whose desired range was obtained by means of the singular perturbation method, that is to say, the upper limit of ammonia coverage ratio was derived by 10ppm NH3 slip while the lower limit was calculated by maximum NOx conversion efficiency, which was obtained through a novel model based non-dominated sorting genetic algorithm (NSGA-II) according to an optimum tradeoff between NOx conversion and NH3 slip at each engine operating point. The state-feedback NMPC algorithm was applied to ensure the estimated ammonia coverage ratio falling in the desired range so that the SCR performance can be optimized over entire engine operating. The standard European steady-state cycle (ESC) was performed for data generation from a diesel engine equipped with a commercial SCR and to verify the effectiveness of the designed control strategy. Simulation results over the entire ESC indicated that the NOx conversion efficiency may be optimal in various engine operating modes and the NMPC controller ensures the most part of the cycle may conform to the NOx emissions requirements; moreover, the downstream NH3 concentration was less than the limit; especially, the whole mean NH3 slip was 9.7ppm which is basically close to the given limit (10ppm); furthermore, the ammonia storage capacity falls rapidly along with growth of the temperature but the NMPC still worked well for prevention of any unacceptably high NH3 slip. The experimental verification was carried out and the results showed that the designed strategy was effective and acceptable compared with the simulated results.

Suggested Citation

  • Wei, Li & Yan, Fuwu & Hu, Jie & Xi, Guangwei & Liu, Bo & Zeng, Jiawei, 2017. "Nox conversion efficiency optimization based on NSGA-II and state-feedback nonlinear model predictive control of selective catalytic reduction system in diesel engine," Applied Energy, Elsevier, vol. 206(C), pages 959-971.
  • Handle: RePEc:eee:appene:v:206:y:2017:i:c:p:959-971
    DOI: 10.1016/j.apenergy.2017.08.223
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261917312576
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2017.08.223?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lotfan, S. & Ghiasi, R. Akbarpour & Fallah, M. & Sadeghi, M.H., 2016. "ANN-based modeling and reducing dual-fuel engine’s challenging emissions by multi-objective evolutionary algorithm NSGA-II," Applied Energy, Elsevier, vol. 175(C), pages 91-99.
    2. Bo Liu & Fuwu Yan & Jie Hu & Richard Fiifi Turkson & Feng Lin, 2016. "Modeling and Multi-Objective Optimization of NO x Conversion Efficiency and NH 3 Slip for a Diesel Engine," Sustainability, MDPI, vol. 8(5), pages 1-13, May.
    3. Qiu, Tao & Li, Xuchu & Liang, Hong & Liu, Xinghua & Lei, Yan, 2014. "A method for estimating the temperature downstream of the SCR (selective catalytic reduction) catalyst in diesel engines," Energy, Elsevier, vol. 68(C), pages 311-317.
    4. Liang, Zengying & Ma, Xiaoqian & Lin, Hai & Tang, Yuting, 2011. "The energy consumption and environmental impacts of SCR technology in China," Applied Energy, Elsevier, vol. 88(4), pages 1120-1129, April.
    5. Jiang, Jibing & Li, Dinggen, 2016. "Theoretical analysis and experimental confirmation of exhaust temperature control for diesel vehicle NOx emissions reduction," Applied Energy, Elsevier, vol. 174(C), pages 232-244.
    6. Varna, Achinta & Spiteri, Alexander C. & Wright, Yuri M. & Dimopoulos Eggenschwiler, Panayotis & Boulouchos, Konstantinos, 2015. "Experimental and numerical assessment of impingement and mixing of urea–water sprays for nitric oxide reduction in diesel exhaust," Applied Energy, Elsevier, vol. 157(C), pages 824-837.
    7. Ko, Jinyoung & Jin, Dongyoung & Jang, Wonwook & Myung, Cha-Lee & Kwon, Sangil & Park, Simsoo, 2017. "Comparative investigation of NOx emission characteristics from a Euro 6-compliant diesel passenger car over the NEDC and WLTC at various ambient temperatures," Applied Energy, Elsevier, vol. 187(C), pages 652-662.
    8. Liu, Yintong & Li, Liguang & Ye, Junyu & Wu, Zhijun & Deng, Jun, 2015. "Numerical simulation study on correlation between ion current signal and NOX emissions in controlled auto-ignition engine," Applied Energy, Elsevier, vol. 156(C), pages 776-782.
    9. Raptotasios, Spiridon I. & Sakellaridis, Nikolaos F. & Papagiannakis, Roussos G. & Hountalas, Dimitrios T., 2015. "Application of a multi-zone combustion model to investigate the NOx reduction potential of two-stroke marine diesel engines using EGR," Applied Energy, Elsevier, vol. 157(C), pages 814-823.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qu, Kaiping & Yu, Tao & Zhang, Xiaoshun & Li, Haofei, 2019. "Homogenized adjacent points method: A novel Pareto optimizer for linearized multi-objective optimal energy flow of integrated electricity and gas system," Applied Energy, Elsevier, vol. 233, pages 338-351.
    2. Jie Hu & Junliang Wang & Jiawei Zeng & Xianglin Zhong, 2018. "Model-Based Temperature Sensor Fault Detection and Fault-Tolerant Control of Urea-Selective Catalyst Reduction Control Systems," Energies, MDPI, vol. 11(7), pages 1-17, July.
    3. Bhowmik, Subrata & Paul, Abhishek & Panua, Rajsekhar & Ghosh, Subrata Kumar, 2020. "Performance, combustion and emission characteristics of a diesel engine fueled with diesel-kerosene-ethanol: A multi-objective optimization study," Energy, Elsevier, vol. 211(C).
    4. Olov Holmer & Lars Eriksson, 2022. "Selective Catalytic Reduction Catalyst Modeling for Control Purposes," Energies, MDPI, vol. 15(21), pages 1-21, November.
    5. Kang, Lulu & Lou, Diming & Zhang, Yunhua & Fang, Liang & Luo, Chagen, 2023. "Research on cross sensitivity of NOx sensor and Adblue injection volume in accordance with the actual situation based on cubature Kalman filter," Energy, Elsevier, vol. 284(C).
    6. Zhang, Xuan-Kai & He, Ya-Ling & Li, Meng-Jie & Hu, Xin, 2022. "The study of heat-mass transfer characteristics and multi-objective optimization on electric arc furnace," Applied Energy, Elsevier, vol. 317(C).
    7. Wang, Zhipeng & Ning, Zhengfu & Guo, Wenting & Zhan, Jie & Zhang, Yuanxin, 2024. "Study of fracture monitoring and heat extraction evaluation in geothermal reservoir modified by abandoned well pattern: Numerical models and case studies," Energy, Elsevier, vol. 296(C).
    8. Sung-An Kim, 2021. "A Study on the Predictive Maintenance Algorithms Considering Load Characteristics of PMSMs to Drive EGR Blowers for Smart Ships," Energies, MDPI, vol. 14(18), pages 1-13, September.
    9. Liu, Wenlong & Gao, Ying & You, Yuelin & Jiang, Changwen & Hua, Taoyi & Xia, Bocong, 2024. "Nonlinear model predictive control(NMPC) of diesel oxidation catalyst (DOC) outlet temperature for active regeneration of diesel particulate filter (DPF) in diesel engine," Energy, Elsevier, vol. 293(C).
    10. Lao, Chung Ting & Akroyd, Jethro & Eaves, Nickolas & Smith, Alastair & Morgan, Neal & Nurkowski, Daniel & Bhave, Amit & Kraft, Markus, 2020. "Investigation of the impact of the configuration of exhaust after-treatment system for diesel engines," Applied Energy, Elsevier, vol. 267(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiang, Jibing & Li, Dinggen, 2016. "Theoretical analysis and experimental confirmation of exhaust temperature control for diesel vehicle NOx emissions reduction," Applied Energy, Elsevier, vol. 174(C), pages 232-244.
    2. Mera, Zamir & Fonseca, Natalia & López, José-María & Casanova, Jesús, 2019. "Analysis of the high instantaneous NOx emissions from Euro 6 diesel passenger cars under real driving conditions," Applied Energy, Elsevier, vol. 242(C), pages 1074-1089.
    3. Liang, Xingyu & Zhao, Bowen & Zhang, Fei & Liu, Qingling, 2019. "Compact research for maritime selective catalytic reduction reactor based on response surface methodology," Applied Energy, Elsevier, vol. 254(C).
    4. Geertsma, R.D. & Negenborn, R.R. & Visser, K. & Hopman, J.J., 2017. "Design and control of hybrid power and propulsion systems for smart ships: A review of developments," Applied Energy, Elsevier, vol. 194(C), pages 30-54.
    5. Geertsma, R.D. & Negenborn, R.R. & Visser, K. & Loonstijn, M.A. & Hopman, J.J., 2017. "Pitch control for ships with diesel mechanical and hybrid propulsion: Modelling, validation and performance quantification," Applied Energy, Elsevier, vol. 206(C), pages 1609-1631.
    6. Myung, Cha-Lee & Jang, Wonwook & Kwon, Sangil & Ko, Jinyoung & Jin, Dongyoung & Park, Simsoo, 2017. "Evaluation of the real-time de-NOx performance characteristics of a LNT-equipped Euro-6 diesel passenger car with various vehicle emissions certification cycles," Energy, Elsevier, vol. 132(C), pages 356-369.
    7. Zhu, Dengting & Zheng, Xinqian, 2018. "A new asymmetric twin-scroll turbine with two wastegates for energy improvements in diesel engines," Applied Energy, Elsevier, vol. 223(C), pages 263-272.
    8. Wang, Jinling & Tian, Yebing & Hu, Xintao & Han, Jinguo & Liu, Bing, 2023. "Integrated assessment and optimization of dual environment and production drivers in grinding," Energy, Elsevier, vol. 272(C).
    9. Hasannuddin, A.K. & Wira, J.Y. & Sarah, S. & Ahmad, M.I. & Aizam, S.A. & Aiman, M.A.B. & Watanabe, S. & Hirofumi, N. & Azrin, M.A., 2016. "Durability studies of single cylinder diesel engine running on emulsion fuel," Energy, Elsevier, vol. 94(C), pages 557-568.
    10. Tan, Peng & Xia, Ji & Zhang, Cheng & Fang, Qingyan & Chen, Gang, 2016. "Modeling and reduction of NOX emissions for a 700 MW coal-fired boiler with the advanced machine learning method," Energy, Elsevier, vol. 94(C), pages 672-679.
    11. Xingyu Liang & Zhijie Zhu & Xinyi Cao & Kun Wang & Yuesen Wang, 2022. "Research on the Soot Generation of Diesel Surrogate Mechanisms of Different Carbon Chain Length," Energies, MDPI, vol. 15(20), pages 1-17, October.
    12. José I. Huertas & Michael Giraldo & Luis F. Quirama & Jenny Díaz, 2018. "Driving Cycles Based on Fuel Consumption," Energies, MDPI, vol. 11(11), pages 1-13, November.
    13. Jiao, Jian-Ling & Han, Kuang-Yi & Wu, Gang & Li, Lan-Lan & Wei, Yi-Ming, 2014. "The effect of an SPR on the oil price in China: A system dynamics approach," Applied Energy, Elsevier, vol. 133(C), pages 363-373.
    14. Mianqiang Xue & Bin-Le Lin & Kiyotaka Tsunemi & Kimitaka Minami & Tetsuya Nanba & Tohru Kawamoto, 2021. "Life Cycle Assessment of Nitrogen Circular Economy-Based NO x Treatment Technology," Sustainability, MDPI, vol. 13(14), pages 1-15, July.
    15. Tang, YuTing & Ma, XiaoQian & Lai, ZhiYi & Chen, Yong, 2013. "Energy analysis and environmental impacts of a MSW oxy-fuel incineration power plant in China," Energy Policy, Elsevier, vol. 60(C), pages 132-141.
    16. Zamboni, Giorgio & Moggia, Simone & Capobianco, Massimo, 2016. "Hybrid EGR and turbocharging systems control for low NOX and fuel consumption in an automotive diesel engine," Applied Energy, Elsevier, vol. 165(C), pages 839-848.
    17. Bolu, Sencer & Ozgul, Emre & Epguzel, Emre & Gurel, Cetin, 2022. "Use of thermodynamic models for compression ratio and peak firing pressure optimization in heavy-duty diesel engine," Energy, Elsevier, vol. 248(C).
    18. Wejkowski, Robert & Wojnar, Wacław, 2018. "Selective catalytic reduction in a rotary air heater (RAH-SCR)," Energy, Elsevier, vol. 145(C), pages 367-373.
    19. Yuan, Yupeng & Wang, Jixiang & Yan, Xinping & Shen, Boyang & Long, Teng, 2020. "A review of multi-energy hybrid power system for ships," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    20. Pang, Kar Mun & Karvounis, Nikolas & Walther, Jens Honore & Schramm, Jesper, 2016. "Numerical investigation of soot formation and oxidation processes under large two-stroke marine diesel engine-like conditions using integrated CFD-chemical kinetics," Applied Energy, Elsevier, vol. 169(C), pages 874-887.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:206:y:2017:i:c:p:959-971. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.