IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v145y2018icp367-373.html
   My bibliography  Save this article

Selective catalytic reduction in a rotary air heater (RAH-SCR)

Author

Listed:
  • Wejkowski, Robert
  • Wojnar, Wacław

Abstract

The paper investigates SCR (Selective Catalytic Reduction) in a RAH (Regenerative Air Heater). A method of using the air heater as a SCR reactor and its expected benefits are presented. In this method, catalytic elements are used as both catalyst carriers and heating surfaces. An analysis of the heat transfer and NOx reduction of the catalytic elements is presented along with an error analysis. Three catalysts (with 0.5% of Cu and 1.5% of Mn; with 0.5% of Cu; and with 0.5% of Mn) were chosen. Using a semi-industrial research scale on prototype catalytic elements, the maximum NOx reduction by 40% was achieved. This can be satisfactory for many industrial applications, in particular in hybrid systems consisting of an efficient low-NOx furnace and RAH-SCR. These results support the usefulness of the RAH-SCR method. The tests of ceramic elements in the RAH of real coal-fired boilers confirmed their resistance to cyclic temperature changes and erosive wear. However, the use of this method is only safe and profitable when all of the operating/process factors that appear during operation of the real device are considered. Therefore, to evaluate the multifaceted efficiency of NOx reduction for RAH-SCR systems, further investigations under real industrial conditions are necessary.

Suggested Citation

  • Wejkowski, Robert & Wojnar, Wacław, 2018. "Selective catalytic reduction in a rotary air heater (RAH-SCR)," Energy, Elsevier, vol. 145(C), pages 367-373.
  • Handle: RePEc:eee:energy:v:145:y:2018:i:c:p:367-373
    DOI: 10.1016/j.energy.2017.12.077
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544217321205
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.12.077?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Han, Yinghui & Zhang, Junjun & Zhao, Yi, 2016. "Visible-light-induced photocatalytic oxidation of nitric oxide and sulfur dioxide: Discrete kinetics and mechanism," Energy, Elsevier, vol. 103(C), pages 725-734.
    2. Qiu, Tao & Li, Xuchu & Liang, Hong & Liu, Xinghua & Lei, Yan, 2014. "A method for estimating the temperature downstream of the SCR (selective catalytic reduction) catalyst in diesel engines," Energy, Elsevier, vol. 68(C), pages 311-317.
    3. Zhao, Yi & Han, Yinghui & Guo, Tianxiang & Ma, Tianzhong, 2014. "Simultaneous removal of SO2, NO and Hg0 from flue gas by ferrate (VI) solution," Energy, Elsevier, vol. 67(C), pages 652-658.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang, Xiao & He, Zhihong & Qiu, Penghua & Dong, Shikui & Tan, Heping, 2019. "Numerical investigations on combustion and emission characteristics of a novel elliptical jet-stabilized model combustor," Energy, Elsevier, vol. 170(C), pages 1082-1097.
    2. Lv, You & Lv, Xuguang & Fang, Fang & Yang, Tingting & Romero, Carlos E., 2020. "Adaptive selective catalytic reduction model development using typical operating data in coal-fired power plants," Energy, Elsevier, vol. 192(C).
    3. Wang, Zhi & Peng, Xianyong & Zhou, Huaichun & Cao, Shengxian & Huang, Wenbo & Yan, Weijie & Li, Kuangyu & Fan, Siyuan, 2024. "A dynamic modeling method using channel-selection convolutional neural network: A case study of NOx emission," Energy, Elsevier, vol. 290(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hasannuddin, A.K. & Wira, J.Y. & Sarah, S. & Ahmad, M.I. & Aizam, S.A. & Aiman, M.A.B. & Watanabe, S. & Hirofumi, N. & Azrin, M.A., 2016. "Durability studies of single cylinder diesel engine running on emulsion fuel," Energy, Elsevier, vol. 94(C), pages 557-568.
    2. Si, Tong & Wang, Chunbo & Liu, Ruiqi & Guo, Yusheng & Yue, Shuang & Ren, Yujie, 2020. "Multi-criteria comprehensive energy efficiency assessment based on fuzzy-AHP method: A case study of post-treatment technologies for coal-fired units," Energy, Elsevier, vol. 200(C).
    3. Li, Hailong & Wang, Bin & Yan, Jinying & Salman, Chaudhary Awais & Thorin, Eva & Schwede, Sebastian, 2019. "Performance of flue gas quench and its influence on biomass fueled CHP," Energy, Elsevier, vol. 180(C), pages 934-945.
    4. Kang, Lulu & Lou, Diming & Zhang, Yunhua & Fang, Liang & Luo, Chagen, 2023. "Research on cross sensitivity of NOx sensor and Adblue injection volume in accordance with the actual situation based on cubature Kalman filter," Energy, Elsevier, vol. 284(C).
    5. Wei, Li & Yan, Fuwu & Hu, Jie & Xi, Guangwei & Liu, Bo & Zeng, Jiawei, 2017. "Nox conversion efficiency optimization based on NSGA-II and state-feedback nonlinear model predictive control of selective catalytic reduction system in diesel engine," Applied Energy, Elsevier, vol. 206(C), pages 959-971.
    6. Song, Heping & Liu, Changpeng & Li, Yanfei & Wang, Zhi & Chen, Longfei & He, Xin & Wang, Jianxin, 2018. "An exploration of utilizing low-pressure diesel injection for natural gas dual-fuel low-temperature combustion," Energy, Elsevier, vol. 153(C), pages 248-255.
    7. Li, Xiangrong & Gao, Haobu & Zhao, Luming & Zhang, Zheng & He, Xu & Liu, Fushui, 2016. "Combustion and emission performance of a split injection diesel engine in a double swirl combustion system," Energy, Elsevier, vol. 114(C), pages 1135-1146.
    8. Myung, Cha-Lee & Jang, Wonwook & Kwon, Sangil & Ko, Jinyoung & Jin, Dongyoung & Park, Simsoo, 2017. "Evaluation of the real-time de-NOx performance characteristics of a LNT-equipped Euro-6 diesel passenger car with various vehicle emissions certification cycles," Energy, Elsevier, vol. 132(C), pages 356-369.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:145:y:2018:i:c:p:367-373. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.