Research on the Soot Generation of Diesel Surrogate Mechanisms of Different Carbon Chain Length
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Raptotasios, Spiridon I. & Sakellaridis, Nikolaos F. & Papagiannakis, Roussos G. & Hountalas, Dimitrios T., 2015. "Application of a multi-zone combustion model to investigate the NOx reduction potential of two-stroke marine diesel engines using EGR," Applied Energy, Elsevier, vol. 157(C), pages 814-823.
- Sun, Xiuxiu & Liang, Xingyu & Shu, Gequn & lin, Jiansheng & Wei, Haiqiao & Zhou, Peilin, 2018. "Development of a surrogate fuel mechanism for application in two-stroke marine diesel engine," Energy, Elsevier, vol. 153(C), pages 56-64.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Maria Faruoli & Alessandro Coclite & Annarita Viggiano & Paolo Caso & Vinicio Magi, 2021. "A Comprehensive Numerical Analysis of the Scavenging Process in a Uniflow Two-Stroke Diesel Engine for General Aviation," Energies, MDPI, vol. 14(21), pages 1-19, November.
- Gu, Jie & Wang, Yingyuan & Hu, Jiancun & Zhang, Kun & Shi, Lei & Deng, Kangyao, 2024. "Real-time prediction of fuel consumption and emissions based on deep autoencoding support vector regression for cylinder pressure-based feedback control of marine diesel engines," Energy, Elsevier, vol. 300(C).
- Zhu, Sipeng & Gu, Yuncheng & Yuan, Hao & Ma, Zetai & Deng, Kangyao, 2020. "Thermodynamic analysis of the turbocharged marine two-stroke engine cycle with different scavenging air control technologies," Energy, Elsevier, vol. 191(C).
- Hoseini, S.S. & Najafi, G. & Ghobadian, B. & Mamat, Rizalman & Sidik, Nor Azwadi Che & Azmi, W.H., 2017. "The effect of combustion management on diesel engine emissions fueled with biodiesel-diesel blends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 307-331.
- Wang, Dawei & Shi, Lei & Zhu, Sipeng & Liu, Bo & Qian, Yuehua & Deng, Kangyao, 2020. "Numerical and thermodynamic study on effects of high and low pressure exhaust gas recirculation on turbocharged marine low-speed engine," Applied Energy, Elsevier, vol. 261(C).
- Zhu, Dengting & Zheng, Xinqian, 2019. "Fuel consumption and emission characteristics in asymmetric twin-scroll turbocharged diesel engine with two exhaust gas recirculation circuits," Applied Energy, Elsevier, vol. 238(C), pages 985-995.
- Theotokatos, Gerasimos & Guan, Cong & Chen, Hui & Lazakis, Iraklis, 2018. "Development of an extended mean value engine model for predicting the marine two-stroke engine operation at varying settings," Energy, Elsevier, vol. 143(C), pages 533-545.
- Zamboni, Giorgio & Moggia, Simone & Capobianco, Massimo, 2016. "Hybrid EGR and turbocharging systems control for low NOX and fuel consumption in an automotive diesel engine," Applied Energy, Elsevier, vol. 165(C), pages 839-848.
- Iqbal, Rashid & Liu, Yancheng & Zeng, Yuji & Zhang, Qinjin & Zeeshan, Muhammad, 2024. "Comparative study based on techno-economics analysis of different shipboard microgrid systems comprising PV/wind/fuel cell/battery/diesel generator with two battery technologies: A step toward green m," Renewable Energy, Elsevier, vol. 221(C).
- Yuan, Yupeng & Wang, Jixiang & Yan, Xinping & Shen, Boyang & Long, Teng, 2020. "A review of multi-energy hybrid power system for ships," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
- Gong, Zhen & Feng, Liyan & Qu, Wenjing & Li, Lincheng & Wei, Lai, 2020. "Auto-ignition characteristics of methane/n-heptane mixtures under carbon dioxide and water dilution conditions," Applied Energy, Elsevier, vol. 278(C).
- Ling-Chin, Janie & Roskilly, Anthony P., 2016. "Investigating the implications of a new-build hybrid power system for Roll-on/Roll-off cargo ships from a sustainability perspective – A life cycle assessment case study," Applied Energy, Elsevier, vol. 181(C), pages 416-434.
- Pang, Kar Mun & Karvounis, Nikolas & Walther, Jens Honore & Schramm, Jesper, 2016. "Numerical investigation of soot formation and oxidation processes under large two-stroke marine diesel engine-like conditions using integrated CFD-chemical kinetics," Applied Energy, Elsevier, vol. 169(C), pages 874-887.
- Sapra, Harsh & Godjevac, Milinko & Visser, Klaas & Stapersma, Douwe & Dijkstra, Chris, 2017. "Experimental and simulation-based investigations of marine diesel engine performance against static back pressure," Applied Energy, Elsevier, vol. 204(C), pages 78-92.
- Tauzia, Xavier & Maiboom, Alain & Karaky, Hassan, 2017. "Semi-physical models to assess the influence of CI engine calibration parameters on NOx and soot emissions," Applied Energy, Elsevier, vol. 208(C), pages 1505-1518.
- Sun, Xiuxiu & Liang, Xingyu & Shu, Gequn & lin, Jiansheng & Wei, Haiqiao & Zhou, Peilin, 2018. "Development of a surrogate fuel mechanism for application in two-stroke marine diesel engine," Energy, Elsevier, vol. 153(C), pages 56-64.
- Zhang, Qiankun & Xia, Jin & He, Zhuoyao & Wang, Jianping & Liu, Rui & Zheng, Liang & Qian, Yong & Ju, Dehao & Lu, Xingcai, 2021. "Experimental study on spray characteristics of six-component diesel surrogate fuel under sub/trans/supercritical conditions with different injection pressures," Energy, Elsevier, vol. 218(C).
- Tang, Yujun & Feng, Jinfeng & Wang, Dawei & Zhu, Sipeng & Bai, Shuzhan & Li, Guoxiang, 2024. "Multi-mode operation of a novel dual-pressure steam rankine cycle system recovering multi-grade waste heat from a marine two-stroke engine equipped with the high-pressure exhaust gas recirculation sys," Energy, Elsevier, vol. 301(C).
- Armellini, A. & Daniotti, S. & Pinamonti, P. & Reini, M., 2018. "Evaluation of gas turbines as alternative energy production systems for a large cruise ship to meet new maritime regulations," Applied Energy, Elsevier, vol. 211(C), pages 306-317.
- Paolo Iodice & Giuseppe Langella & Amedeo Amoresano, 2017. "A numerical approach to assess air pollution by ship engines in manoeuvring mode and fuel switch conditions," Energy & Environment, , vol. 28(8), pages 827-845, December.
More about this item
Keywords
marine diesel engine; soot; numerical simulation; soot model; surrogate fuels reaction mechanism;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:20:p:7625-:d:943308. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.