Modeling and reduction of NOX emissions for a 700 MW coal-fired boiler with the advanced machine learning method
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2015.11.020
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Wei, Zhongbao & Li, Xiaolu & Xu, Lijun & Cheng, Yanting, 2013. "Comparative study of computational intelligence approaches for NOx reduction of coal-fired boiler," Energy, Elsevier, vol. 55(C), pages 683-692.
- Liukkonen, Mika & Hälikkä, Eero & Hiltunen, Teri & Hiltunen, Yrjö, 2012. "Dynamic soft sensors for NOx emissions in a circulating fluidized bed boiler," Applied Energy, Elsevier, vol. 97(C), pages 483-490.
- Wang, Jianzhou & Jiang, He & Wu, Yujie & Dong, Yao, 2015. "Forecasting solar radiation using an optimized hybrid model by Cuckoo Search algorithm," Energy, Elsevier, vol. 81(C), pages 627-644.
- Smrekar, J. & Potočnik, P. & Senegačnik, A., 2013. "Multi-step-ahead prediction of NOx emissions for a coal-based boiler," Applied Energy, Elsevier, vol. 106(C), pages 89-99.
- Liang, Zengying & Ma, Xiaoqian & Lin, Hai & Tang, Yuting, 2011. "The energy consumption and environmental impacts of SCR technology in China," Applied Energy, Elsevier, vol. 88(4), pages 1120-1129, April.
- Zhou, Hao & Cen, Kefa & Fan, Jianren, 2004. "Modeling and optimization of the NOx emission characteristics of a tangentially fired boiler with artificial neural networks," Energy, Elsevier, vol. 29(1), pages 167-183.
- Lv, You & Liu, Jizhen & Yang, Tingting & Zeng, Deliang, 2013. "A novel least squares support vector machine ensemble model for NOx emission prediction of a coal-fired boiler," Energy, Elsevier, vol. 55(C), pages 319-329.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Li, Shicheng & Ma, Suxia & Wang, Fang, 2023. "A combined NOx emission prediction model based on semi-empirical model and black box models," Energy, Elsevier, vol. 264(C).
- Li, Qingwei & Wu, Jiang & Wei, Hongqi, 2018. "Reduction of elemental mercury in coal-fired boiler flue gas with computational intelligence approach," Energy, Elsevier, vol. 160(C), pages 753-762.
- Tan, Peng & He, Biao & Zhang, Cheng & Rao, Debei & Li, Shengnan & Fang, Qingyan & Chen, Gang, 2019. "Dynamic modeling of NOX emission in a 660 MW coal-fired boiler with long short-term memory," Energy, Elsevier, vol. 176(C), pages 429-436.
- Sabarathinam Srinivasan & Suresh Kumarasamy & Zacharias E. Andreadakis & Pedro G. Lind, 2023. "Artificial Intelligence and Mathematical Models of Power Grids Driven by Renewable Energy Sources: A Survey," Energies, MDPI, vol. 16(14), pages 1-56, July.
- Lv, You & Lv, Xuguang & Fang, Fang & Yang, Tingting & Romero, Carlos E., 2020. "Adaptive selective catalytic reduction model development using typical operating data in coal-fired power plants," Energy, Elsevier, vol. 192(C).
- Wang, Zhi & Peng, Xianyong & Zhou, Huaichun & Cao, Shengxian & Huang, Wenbo & Yan, Weijie & Li, Kuangyu & Fan, Siyuan, 2024. "A dynamic modeling method using channel-selection convolutional neural network: A case study of NOx emission," Energy, Elsevier, vol. 290(C).
- Tuttle, Jacob F. & Blackburn, Landen D. & Andersson, Klas & Powell, Kody M., 2021. "A systematic comparison of machine learning methods for modeling of dynamic processes applied to combustion emission rate modeling," Applied Energy, Elsevier, vol. 292(C).
- Hyuk Choi & Ju-Hong Lee & Ji-Hoon Yu & Un-Chul Moon & Mi-Jong Kim & Kwang Y. Lee, 2023. "One-Step Ahead Control Using Online Interpolated Transfer Function for Supplementary Control of Air-Fuel Ratio in Thermal Power Plants," Energies, MDPI, vol. 16(21), pages 1-18, November.
- Chuanpeng Zhu & Pu Huang & Yiguo Li, 2022. "Closed-Loop Combustion Optimization Based on Dynamic and Adaptive Models with Application to a Coal-Fired Boiler," Energies, MDPI, vol. 15(14), pages 1-16, July.
- Xie, Peiran & Gao, Mingming & Zhang, Hongfu & Niu, Yuguang & Wang, Xiaowen, 2020. "Dynamic modeling for NOx emission sequence prediction of SCR system outlet based on sequence to sequence long short-term memory network," Energy, Elsevier, vol. 190(C).
- Li, Qingwei & Yao, Guihuan, 2017. "Improved coal combustion optimization model based on load balance and coal qualities," Energy, Elsevier, vol. 132(C), pages 204-212.
- Yang, Guotian & Wang, Yingnan & Li, Xinli, 2020. "Prediction of the NOx emissions from thermal power plant using long-short term memory neural network," Energy, Elsevier, vol. 192(C).
- Tang, Zhenhao & Wang, Shikui & Chai, Xiangying & Cao, Shengxian & Ouyang, Tinghui & Li, Yang, 2022. "Auto-encoder-extreme learning machine model for boiler NOx emission concentration prediction," Energy, Elsevier, vol. 256(C).
- Fan, Yuchen & Liu, Xin & Zhang, Chaoqun & Li, Chi & Li, Xinying & Wang, Heyang, 2024. "Dynamic prediction of boiler NOx emission with graph convolutional gated recurrent unit model optimized by genetic algorithm," Energy, Elsevier, vol. 294(C).
- Xinying Xu & Qi Chen & Mifeng Ren & Lan Cheng & Jun Xie, 2019. "Combustion Optimization for Coal Fired Power Plant Boilers Based on Improved Distributed ELM and Distributed PSO," Energies, MDPI, vol. 12(6), pages 1-24, March.
- Nan Li & You Lv & Yong Hu, 2022. "Prediction of NOx Emissions from a Coal-Fired Boiler Based on Convolutional Neural Networks with a Channel Attention Mechanism," Energies, MDPI, vol. 16(1), pages 1-11, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Lv, You & Lv, Xuguang & Fang, Fang & Yang, Tingting & Romero, Carlos E., 2020. "Adaptive selective catalytic reduction model development using typical operating data in coal-fired power plants," Energy, Elsevier, vol. 192(C).
- Li, Qingwei & Yao, Guihuan, 2017. "Improved coal combustion optimization model based on load balance and coal qualities," Energy, Elsevier, vol. 132(C), pages 204-212.
- Ding, Xiaosong & Feng, Chong & Yu, Peiling & Li, Kaiwen & Chen, Xi, 2023. "Gradient boosting decision tree in the prediction of NOx emission of waste incineration," Energy, Elsevier, vol. 264(C).
- Tan, Peng & He, Biao & Zhang, Cheng & Rao, Debei & Li, Shengnan & Fang, Qingyan & Chen, Gang, 2019. "Dynamic modeling of NOX emission in a 660 MW coal-fired boiler with long short-term memory," Energy, Elsevier, vol. 176(C), pages 429-436.
- Tuttle, Jacob F. & Blackburn, Landen D. & Andersson, Klas & Powell, Kody M., 2021. "A systematic comparison of machine learning methods for modeling of dynamic processes applied to combustion emission rate modeling," Applied Energy, Elsevier, vol. 292(C).
- Wen, Xiaoqiang & Li, Kaichuang & Wang, Jianguo, 2023. "NOx emission predicting for coal-fired boilers based on ensemble learning methods and optimized base learners," Energy, Elsevier, vol. 264(C).
- Xie, Peiran & Gao, Mingming & Zhang, Hongfu & Niu, Yuguang & Wang, Xiaowen, 2020. "Dynamic modeling for NOx emission sequence prediction of SCR system outlet based on sequence to sequence long short-term memory network," Energy, Elsevier, vol. 190(C).
- Lv, You & Hong, Feng & Yang, Tingting & Fang, Fang & Liu, Jizhen, 2017. "A dynamic model for the bed temperature prediction of circulating fluidized bed boilers based on least squares support vector machine with real operational data," Energy, Elsevier, vol. 124(C), pages 284-294.
- Zheng, Wei & Wang, Chao & Yang, Yajun & Zhang, Yongfei, 2020. "Multi-objective combustion optimization based on data-driven hybrid strategy," Energy, Elsevier, vol. 191(C).
- Yang, Guotian & Wang, Yingnan & Li, Xinli, 2020. "Prediction of the NOx emissions from thermal power plant using long-short term memory neural network," Energy, Elsevier, vol. 192(C).
- Zhenhao Tang & Xiaoyan Wu & Shengxian Cao, 2019. "Adaptive Nonlinear Model Predictive Control of the Combustion Efficiency under the NOx Emissions and Load Constraints," Energies, MDPI, vol. 12(9), pages 1-16, May.
- Fan, Yuchen & Liu, Xin & Zhang, Chaoqun & Li, Chi & Li, Xinying & Wang, Heyang, 2024. "Dynamic prediction of boiler NOx emission with graph convolutional gated recurrent unit model optimized by genetic algorithm," Energy, Elsevier, vol. 294(C).
- Liukkonen, Mika & Hälikkä, Eero & Hiltunen, Teri & Hiltunen, Yrjö, 2012. "Dynamic soft sensors for NOx emissions in a circulating fluidized bed boiler," Applied Energy, Elsevier, vol. 97(C), pages 483-490.
- Navarkar, Abhishek & Hasti, Veeraraghava Raju & Deneke, Elihu & Gore, Jay P., 2020. "A data-driven model for thermodynamic properties of a steam generator under cycling operation," Energy, Elsevier, vol. 211(C).
- Choi, Minsung & Park, Yeseul & Li, Xinzhuo & Kim, Kibeom & Sung, Yonmo & Hwang, Taegam & Choi, Gyungmin, 2021. "Numerical evaluation of pulverized coal swirling flames and NOx emissions in a coal-fired boiler: Effects of co- and counter-swirling flames and coal injection modes," Energy, Elsevier, vol. 217(C).
- Ögren, Yngve & Tóth, Pál & Garami, Attila & Sepman, Alexey & Wiinikka, Henrik, 2018. "Development of a vision-based soft sensor for estimating equivalence ratio and major species concentration in entrained flow biomass gasification reactors," Applied Energy, Elsevier, vol. 226(C), pages 450-460.
- Wang, Chunlin & Liu, Yang & Zheng, Song & Jiang, Aipeng, 2018. "Optimizing combustion of coal fired boilers for reducing NOx emission using Gaussian Process," Energy, Elsevier, vol. 153(C), pages 149-158.
- Jang, Hayoung & Jeong, Byongug & Zhou, Peilin & Ha, Seungman & Nam, Dong, 2021. "Demystifying the lifecycle environmental benefits and harms of LNG as marine fuel," Applied Energy, Elsevier, vol. 292(C).
- Bai, Y. & Zhou, D.Q. & Zhou, P., 2012. "Modelling and analysis of oil import tariff and stockpile policies for coping with supply disruptions," Applied Energy, Elsevier, vol. 97(C), pages 84-90.
- Rossi, Francesco & Velázquez, David, 2015. "A methodology for energy savings verification in industry with application for a CHP (combined heat and power) plant," Energy, Elsevier, vol. 89(C), pages 528-544.
More about this item
Keywords
NOX emissions; Extreme learning machine; Harmony search; Combustion optimization; Coal-fired boiler;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:94:y:2016:i:c:p:672-679. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.