IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v284y2023ics0360544223020601.html
   My bibliography  Save this article

Research on cross sensitivity of NOx sensor and Adblue injection volume in accordance with the actual situation based on cubature Kalman filter

Author

Listed:
  • Kang, Lulu
  • Lou, Diming
  • Zhang, Yunhua
  • Fang, Liang
  • Luo, Chagen

Abstract

Due to the nitrogen oxide (NOx) sensor's cross-sensitivity and inability to monitor ammonia coverage, it is critical to eliminate these flaws for a significant percentage of in-use diesel vehicles without NH3 sensors. In this study, a platform for multi-model co-simulation was established. The results showed that the downstream NOx concentration of the selective catalytic reduction (SCR) could be more accurately calculated using the filtering model based on cubature Kalman filter (CKF). Under European Steady-State Cycle (ESC) and European Transient Cycle (ETC), the prediction errors of the filtering model based on CKF were 4.6% and 7.7%, respectively. Under ESC, compared with the old control strategy, the prediction accuracy of temperature model of the new control strategy was increased by 2.6%, the average Adblue injection rate was increased by 9.1%, and the average NOx conversion efficiency was increased by 4.3%. Under ETC, the prediction accuracy of the temperature model of the new control strategy was increased by 2.5%, leading to a high average NOx conversion efficiency of 87.9%. Regarding the old control strategy, although the average NOx conversion efficiency reached 92.1%, the average ammonia slip concentration exceeded the threshold (10 ppm) by more than five times.

Suggested Citation

  • Kang, Lulu & Lou, Diming & Zhang, Yunhua & Fang, Liang & Luo, Chagen, 2023. "Research on cross sensitivity of NOx sensor and Adblue injection volume in accordance with the actual situation based on cubature Kalman filter," Energy, Elsevier, vol. 284(C).
  • Handle: RePEc:eee:energy:v:284:y:2023:i:c:s0360544223020601
    DOI: 10.1016/j.energy.2023.128666
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223020601
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.128666?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Qiu, Tao & Li, Xuchu & Liang, Hong & Liu, Xinghua & Lei, Yan, 2014. "A method for estimating the temperature downstream of the SCR (selective catalytic reduction) catalyst in diesel engines," Energy, Elsevier, vol. 68(C), pages 311-317.
    2. Taixiong Zheng & Bin Yang & Yongfu Li & Ying Ma, 2019. "Luenberger-Sliding Mode Observer Based Backstepping Control for the SCR System in a Diesel Engine," Energies, MDPI, vol. 12(22), pages 1-19, November.
    3. Rao, Xiang & Sheng, Chenxing & Guo, Zhiwei & Zhang, Xuecheng & Yin, Huabing & Xu, Chang & Yuan, Chengqing, 2021. "Effects of textured cylinder liner piston ring on performances of diesel engine under hot engine tests," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    4. Kangfeng Sun & Fenzhu Ji & Xiaoyu Yan & Kai Jiang & Shichun Yang, 2018. "A particle filter for ammonia coverage ratio and input simultaneous estimations in Diesel-engine SCR system," PLOS ONE, Public Library of Science, vol. 13(2), pages 1-17, February.
    5. Wei, Li & Yan, Fuwu & Hu, Jie & Xi, Guangwei & Liu, Bo & Zeng, Jiawei, 2017. "Nox conversion efficiency optimization based on NSGA-II and state-feedback nonlinear model predictive control of selective catalytic reduction system in diesel engine," Applied Energy, Elsevier, vol. 206(C), pages 959-971.
    6. Hu, Jie & Zeng, Jiawei & Wei, Li, 2018. "Failure diagnosis and tolerant control method for hydrothermally aged SCR system by utilizing EKF observer and MRAC controller," Energy, Elsevier, vol. 156(C), pages 103-121.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Bingxin & Fei, Hongzi & Wang, Liuping & Fan, Liyun & Yang, Xiaotao, 2024. "Real-time estimation of fuel injection rate and injection volume in high-pressure common rail systems," Energy, Elsevier, vol. 298(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Wenlong & Gao, Ying & You, Yuelin & Jiang, Changwen & Hua, Taoyi & Xia, Bocong, 2024. "Nonlinear model predictive control(NMPC) of diesel oxidation catalyst (DOC) outlet temperature for active regeneration of diesel particulate filter (DPF) in diesel engine," Energy, Elsevier, vol. 293(C).
    2. Hasannuddin, A.K. & Wira, J.Y. & Sarah, S. & Ahmad, M.I. & Aizam, S.A. & Aiman, M.A.B. & Watanabe, S. & Hirofumi, N. & Azrin, M.A., 2016. "Durability studies of single cylinder diesel engine running on emulsion fuel," Energy, Elsevier, vol. 94(C), pages 557-568.
    3. Tadeusz Dziubak & Sebastian Dominik Dziubak, 2022. "A Study on the Effect of Inlet Air Pollution on the Engine Component Wear and Operation," Energies, MDPI, vol. 15(3), pages 1-50, February.
    4. Rao, Xiang & Sheng, Chenxing & Guo, Zhiwei & Dai, Leyang & Yuan, Chengqing, 2023. "A novel finding on tribological, emission, and vibration performances of diesel engines linking to graphene-attapulgite lubricants additives under hot engine tests," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    5. Wejkowski, Robert & Wojnar, Wacław, 2018. "Selective catalytic reduction in a rotary air heater (RAH-SCR)," Energy, Elsevier, vol. 145(C), pages 367-373.
    6. Zhang, Xuan-Kai & He, Ya-Ling & Li, Meng-Jie & Hu, Xin, 2022. "The study of heat-mass transfer characteristics and multi-objective optimization on electric arc furnace," Applied Energy, Elsevier, vol. 317(C).
    7. Dong, Zhe & Liu, Miao & Guo, Zhiwu & Huang, Xiaojin & Zhang, Yajun & Zhang, Zuoyi, 2019. "Adaptive state-observer for monitoring flexible nuclear reactors," Energy, Elsevier, vol. 171(C), pages 893-909.
    8. Liu, Bingxin & Fei, Hongzi & Wang, Liuping & Fan, Liyun & Yang, Xiaotao, 2024. "Real-time estimation of fuel injection rate and injection volume in high-pressure common rail systems," Energy, Elsevier, vol. 298(C).
    9. Sung-An Kim, 2021. "A Study on the Predictive Maintenance Algorithms Considering Load Characteristics of PMSMs to Drive EGR Blowers for Smart Ships," Energies, MDPI, vol. 14(18), pages 1-13, September.
    10. Wei, Li & Yan, Fuwu & Hu, Jie & Xi, Guangwei & Liu, Bo & Zeng, Jiawei, 2017. "Nox conversion efficiency optimization based on NSGA-II and state-feedback nonlinear model predictive control of selective catalytic reduction system in diesel engine," Applied Energy, Elsevier, vol. 206(C), pages 959-971.
    11. Bhowmik, Subrata & Paul, Abhishek & Panua, Rajsekhar & Ghosh, Subrata Kumar, 2020. "Performance, combustion and emission characteristics of a diesel engine fueled with diesel-kerosene-ethanol: A multi-objective optimization study," Energy, Elsevier, vol. 211(C).
    12. Wang, Zhipeng & Ning, Zhengfu & Guo, Wenting & Zhan, Jie & Zhang, Yuanxin, 2024. "Study of fracture monitoring and heat extraction evaluation in geothermal reservoir modified by abandoned well pattern: Numerical models and case studies," Energy, Elsevier, vol. 296(C).
    13. Song, Heping & Liu, Changpeng & Li, Yanfei & Wang, Zhi & Chen, Longfei & He, Xin & Wang, Jianxin, 2018. "An exploration of utilizing low-pressure diesel injection for natural gas dual-fuel low-temperature combustion," Energy, Elsevier, vol. 153(C), pages 248-255.
    14. Jie Hu & Junliang Wang & Jiawei Zeng & Xianglin Zhong, 2018. "Model-Based Temperature Sensor Fault Detection and Fault-Tolerant Control of Urea-Selective Catalyst Reduction Control Systems," Energies, MDPI, vol. 11(7), pages 1-17, July.
    15. Li, Xiangrong & Gao, Haobu & Zhao, Luming & Zhang, Zheng & He, Xu & Liu, Fushui, 2016. "Combustion and emission performance of a split injection diesel engine in a double swirl combustion system," Energy, Elsevier, vol. 114(C), pages 1135-1146.
    16. Lao, Chung Ting & Akroyd, Jethro & Eaves, Nickolas & Smith, Alastair & Morgan, Neal & Nurkowski, Daniel & Bhave, Amit & Kraft, Markus, 2020. "Investigation of the impact of the configuration of exhaust after-treatment system for diesel engines," Applied Energy, Elsevier, vol. 267(C).
    17. Olov Holmer & Lars Eriksson, 2022. "Selective Catalytic Reduction Catalyst Modeling for Control Purposes," Energies, MDPI, vol. 15(21), pages 1-21, November.
    18. Wang, Guoyang & Awad, Omar I. & Liu, Shiyu & Shuai, Shijin & Wang, Zhiming, 2020. "NOx emissions prediction based on mutual information and back propagation neural network using correlation quantitative analysis," Energy, Elsevier, vol. 198(C).
    19. Qu, Kaiping & Yu, Tao & Zhang, Xiaoshun & Li, Haofei, 2019. "Homogenized adjacent points method: A novel Pareto optimizer for linearized multi-objective optimal energy flow of integrated electricity and gas system," Applied Energy, Elsevier, vol. 233, pages 338-351.
    20. Myung, Cha-Lee & Jang, Wonwook & Kwon, Sangil & Ko, Jinyoung & Jin, Dongyoung & Park, Simsoo, 2017. "Evaluation of the real-time de-NOx performance characteristics of a LNT-equipped Euro-6 diesel passenger car with various vehicle emissions certification cycles," Energy, Elsevier, vol. 132(C), pages 356-369.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:284:y:2023:i:c:s0360544223020601. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.