IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i9p2581-d547299.html
   My bibliography  Save this article

Design of a 1 MW th Pilot Plant for Chemical Looping Gasification of Biogenic Residues

Author

Listed:
  • Falko Marx

    (Institute for Energy Systems & Technology, Technische Universität Darmstadt, Otto-Berndt-Str. 2, 64287 Darmstadt, Germany)

  • Paul Dieringer

    (Institute for Energy Systems & Technology, Technische Universität Darmstadt, Otto-Berndt-Str. 2, 64287 Darmstadt, Germany)

  • Jochen Ströhle

    (Institute for Energy Systems & Technology, Technische Universität Darmstadt, Otto-Berndt-Str. 2, 64287 Darmstadt, Germany)

  • Bernd Epple

    (Institute for Energy Systems & Technology, Technische Universität Darmstadt, Otto-Berndt-Str. 2, 64287 Darmstadt, Germany)

Abstract

Chemical looping gasification (CLG) is a promising process for the thermochemical solid to liquid conversion route using lattice oxygen, provided by a solid oxygen carrier material, to produce a nitrogen free synthesis gas. Recent advances in lab-scale experiments show that CLG with biomass has the possibility to produce a carbon neutral synthesis gas. However, all experiments have been conducted in externally heated units, not enabling autothermal operation. In this study, the modification of an existing pilot plant for demonstrating autothermal operation of CLG is described. Energy and mass balances are calculated using a validated chemical looping combustion process model extended for biomass gasification. Based on six operational cases, adaptations of the pilot plant are designed and changes discussed. A reactor configuration using two circulating fluidized bed reactors with internal solid circulation in the air reactor is proposed and a suitable operating strategy devised. The resulting experimental unit enables a reasonable range of operational parameters within restrictions imposed from autothermal operation.

Suggested Citation

  • Falko Marx & Paul Dieringer & Jochen Ströhle & Bernd Epple, 2021. "Design of a 1 MW th Pilot Plant for Chemical Looping Gasification of Biogenic Residues," Energies, MDPI, vol. 14(9), pages 1-25, April.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:9:p:2581-:d:547299
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/9/2581/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/9/2581/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chen, Liangyong & Bao, Jinhua & Kong, Liang & Combs, Megan & Nikolic, Heather S. & Fan, Zhen & Liu, Kunlei, 2016. "The direct solid-solid reaction between coal char and iron-based oxygen carrier and its contribution to solid-fueled chemical looping combustion," Applied Energy, Elsevier, vol. 184(C), pages 9-18.
    2. Andrea Di Giuliano & Stefania Lucantonio & Katia Gallucci, 2021. "Devolatilization of Residual Biomasses for Chemical Looping Gasification in Fluidized Beds Made Up of Oxygen-Carriers," Energies, MDPI, vol. 14(2), pages 1-16, January.
    3. Ströhle, Jochen & Orth, Matthias & Epple, Bernd, 2015. "Chemical looping combustion of hard coal in a 1MWth pilot plant using ilmenite as oxygen carrier," Applied Energy, Elsevier, vol. 157(C), pages 288-294.
    4. Antonio Molino & Vincenzo Larocca & Simeone Chianese & Dino Musmarra, 2018. "Biofuels Production by Biomass Gasification: A Review," Energies, MDPI, vol. 11(4), pages 1-31, March.
    5. Benedikt, Florian & Kuba, Matthias & Schmid, Johannes Christian & Müller, Stefan & Hofbauer, Hermann, 2019. "Assessment of correlations between tar and product gas composition in dual fluidized bed steam gasification for online tar prediction," Applied Energy, Elsevier, vol. 238(C), pages 1138-1149.
    6. Ströhle, Jochen & Orth, Matthias & Epple, Bernd, 2014. "Design and operation of a 1MWth chemical looping plant," Applied Energy, Elsevier, vol. 113(C), pages 1490-1495.
    7. Ohlemüller, Peter & Alobaid, Falah & Gunnarsson, Adrian & Ströhle, Jochen & Epple, Bernd, 2015. "Development of a process model for coal chemical looping combustion and validation against 100kWth tests," Applied Energy, Elsevier, vol. 157(C), pages 433-448.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Paul Dieringer & Falko Marx & Jochen Ströhle & Bernd Epple, 2023. "System Hydrodynamics of a 1 MW th Dual Circulating Fluidized Bed Chemical Looping Gasifier," Energies, MDPI, vol. 16(15), pages 1-46, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Siriwardane, Ranjani & Benincosa, William & Riley, Jarrett & Tian, Hanjing & Richards, George, 2016. "Investigation of reactions in a fluidized bed reactor during chemical looping combustion of coal/steam with copper oxide-iron oxide-alumina oxygen carrier," Applied Energy, Elsevier, vol. 183(C), pages 1550-1564.
    2. Andrea Di Giuliano & Stefania Lucantonio & Katia Gallucci, 2021. "Devolatilization of Residual Biomasses for Chemical Looping Gasification in Fluidized Beds Made Up of Oxygen-Carriers," Energies, MDPI, vol. 14(2), pages 1-16, January.
    3. Rajabi, Mahsa & Mehrpooya, Mehdi & Haibo, Zhao & Huang, Zhen, 2019. "Chemical looping technology in CHP (combined heat and power) and CCHP (combined cooling heating and power) systems: A critical review," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    4. Alobaid, Falah & Ohlemüller, Peter & Ströhle, Jochen & Epple, Bernd, 2015. "Extended Euler–Euler model for the simulation of a 1 MWth chemical–looping pilot plant," Energy, Elsevier, vol. 93(P2), pages 2395-2405.
    5. Fan, Junming & Zhu, Lin & Hong, Hui & Jiang, Qiongqiong & Jin, Hongguang, 2017. "A thermodynamic and environmental performance of in-situ gasification of chemical looping combustion for power generation using ilmenite with different coals and comparison with other coal-driven powe," Energy, Elsevier, vol. 119(C), pages 1171-1180.
    6. Ströhle, Jochen & Orth, Matthias & Epple, Bernd, 2015. "Chemical looping combustion of hard coal in a 1MWth pilot plant using ilmenite as oxygen carrier," Applied Energy, Elsevier, vol. 157(C), pages 288-294.
    7. Rana, Shazadi & Sun, Zhenkun & Mehrani, Poupak & Hughes, Robin & Macchi, Arturo, 2019. "Ilmenite oxidation kinetics for pressurized chemical looping combustion of natural gas," Applied Energy, Elsevier, vol. 238(C), pages 747-759.
    8. Mendiara, T. & García-Labiano, F. & Abad, A. & Gayán, P. & de Diego, L.F. & Izquierdo, M.T. & Adánez, J., 2018. "Negative CO2 emissions through the use of biofuels in chemical looping technology: A review," Applied Energy, Elsevier, vol. 232(C), pages 657-684.
    9. Paul Dieringer & Falko Marx & Jochen Ströhle & Bernd Epple, 2023. "System Hydrodynamics of a 1 MW th Dual Circulating Fluidized Bed Chemical Looping Gasifier," Energies, MDPI, vol. 16(15), pages 1-46, July.
    10. Zhang, Hao & Hong, Hui & Jiang, Qiongqiong & Deng, Ya'nan & Jin, Hongguang & Kang, Qilan, 2018. "Development of a chemical-looping combustion reactor having porous honeycomb chamber and experimental validation by using NiO/NiAl2O4," Applied Energy, Elsevier, vol. 211(C), pages 259-268.
    11. Durmaz, Merve & Dilmaç, Nesibe & Dilmaç, Ömer Faruk, 2020. "Evaluation of performance of copper converter slag as oxygen carrier in chemical-looping combustion (CLC)," Energy, Elsevier, vol. 196(C).
    12. Chen, Liangyong & Bao, Jinhua & Kong, Liang & Combs, Megan & Nikolic, Heather S. & Fan, Zhen & Liu, Kunlei, 2017. "Activation of ilmenite as an oxygen carrier for solid-fueled chemical looping combustion," Applied Energy, Elsevier, vol. 197(C), pages 40-51.
    13. Schnellmann, Matthias A. & Donat, Felix & Scott, Stuart A. & Williams, Gareth & Dennis, John S., 2018. "The effect of different particle residence time distributions on the chemical looping combustion process," Applied Energy, Elsevier, vol. 216(C), pages 358-366.
    14. Octávio Alves & Luís Calado & Roberta M. Panizio & Catarina Nobre & Eliseu Monteiro & Paulo Brito & Margarida Gonçalves, 2022. "Gasification of Solid Recovered Fuels with Variable Fractions of Polymeric Materials," Energies, MDPI, vol. 15(21), pages 1-19, November.
    15. Gheorghe Lazaroiu & Lucian Mihaescu & Gabriel Negreanu & Constantin Pana & Ionel Pisa & Alexandru Cernat & Dana-Alexandra Ciupageanu, 2018. "Experimental Investigations of Innovative Biomass Energy Harnessing Solutions," Energies, MDPI, vol. 11(12), pages 1-18, December.
    16. Schmitz, Matthias & Linderholm, Carl Johan, 2016. "Performance of calcium manganate as oxygen carrier in chemical looping combustion of biochar in a 10kW pilot," Applied Energy, Elsevier, vol. 169(C), pages 729-737.
    17. Zhang, Hanfei & Wang, Ligang & Pérez-Fortes, Mar & Van herle, Jan & Maréchal, François & Desideri, Umberto, 2020. "Techno-economic optimization of biomass-to-methanol with solid-oxide electrolyzer," Applied Energy, Elsevier, vol. 258(C).
    18. Mayer, Karl & Penthor, Stefan & Pröll, Tobias & Hofbauer, Hermann, 2015. "The different demands of oxygen carriers on the reactor system of a CLC plant – Results of oxygen carrier testing in a 120kWth pilot plant," Applied Energy, Elsevier, vol. 157(C), pages 323-329.
    19. Kim, Jun Young & Kim, Dongjae & Li, Zezhong John & Dariva, Claudio & Cao, Yankai & Ellis, Naoko, 2023. "Predicting and optimizing syngas production from fluidized bed biomass gasifiers: A machine learning approach," Energy, Elsevier, vol. 263(PC).
    20. Zhang, Yitao & Wang, Dawei & Pottimurthy, Yaswanth & Kong, Fanhe & Hsieh, Tien-Lin & Sakadjian, Bartev & Chung, Cheng & Park, Cody & Xu, Dikai & Bao, Jinhua & Velazquez-Vargas, Luis & Guo, Mengqing & , 2021. "Coal direct chemical looping process: 250 kW pilot-scale testing for power generation and carbon capture," Applied Energy, Elsevier, vol. 282(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:9:p:2581-:d:547299. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.