IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v183y2016icp113-120.html
   My bibliography  Save this article

Systematic search algorithm for potential thermochemical energy storage systems

Author

Listed:
  • Deutsch, Markus
  • Müller, Danny
  • Aumeyr, Christian
  • Jordan, Christian
  • Gierl-Mayer, Christian
  • Weinberger, Peter
  • Winter, Franz
  • Werner, Andreas

Abstract

Thermochemical energy storage (TCES) is considered as an emerging green technology for increased energy utilization efficiency, thereby achieving a reduction of greenhouse gases. Various reaction systems based on different substance classes (e.g. hydrates, hydroxides, oxides) were suggested and investigated so far. Nevertheless, the number of know reactions which are suitable is still limited, as the main focus concentrates on the investigation of a handful known substances, their further improvement or applicability. To find novel promising candidates for thermochemical energy storage and also to allow for a broader view on the topic, this work present a systematic search approach for thermochemical storage reactions based on chemical databases. A mathematical search algorithm identifies potential reactions categorized by the reactant necessary for the reaction cycle and ranked by storage density. These candidates are listed in the online available VIENNA TCES-database, combined with experimental results, assessing the suitability of these reactions regarding of e.g. decomposition/recombination temperature, reversibility, cycle stability, etc.

Suggested Citation

  • Deutsch, Markus & Müller, Danny & Aumeyr, Christian & Jordan, Christian & Gierl-Mayer, Christian & Weinberger, Peter & Winter, Franz & Werner, Andreas, 2016. "Systematic search algorithm for potential thermochemical energy storage systems," Applied Energy, Elsevier, vol. 183(C), pages 113-120.
  • Handle: RePEc:eee:appene:v:183:y:2016:i:c:p:113-120
    DOI: 10.1016/j.apenergy.2016.08.142
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626191631251X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2016.08.142?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cot-Gores, Jaume & Castell, Albert & Cabeza, Luisa F., 2012. "Thermochemical energy storage and conversion: A-state-of-the-art review of the experimental research under practical conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 5207-5224.
    2. Aydin, Devrim & Casey, Sean P. & Riffat, Saffa, 2015. "The latest advancements on thermochemical heat storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 356-367.
    3. Arce, Pablo & Medrano, Marc & Gil, Antoni & Oró, Eduard & Cabeza, Luisa F., 2011. "Overview of thermal energy storage (TES) potential energy savings and climate change mitigation in Spain and Europe," Applied Energy, Elsevier, vol. 88(8), pages 2764-2774, August.
    4. N’Tsoukpoe, Kokouvi Edem & Schmidt, Thomas & Rammelberg, Holger Urs & Watts, Beatriz Amanda & Ruck, Wolfgang K.L., 2014. "A systematic multi-step screening of numerous salt hydrates for low temperature thermochemical energy storage," Applied Energy, Elsevier, vol. 124(C), pages 1-16.
    5. Fopah Lele, Armand & Kuznik, Frédéric & Rammelberg, Holger U. & Schmidt, Thomas & Ruck, Wolfgang K.L., 2015. "Thermal decomposition kinetic of salt hydrates for heat storage systems," Applied Energy, Elsevier, vol. 154(C), pages 447-458.
    6. Albrecht, Kevin J. & Jackson, Gregory S. & Braun, Robert J., 2016. "Thermodynamically consistent modeling of redox-stable perovskite oxides for thermochemical energy conversion and storage," Applied Energy, Elsevier, vol. 165(C), pages 285-296.
    7. Ma, Q. & Luo, L. & Wang, R.Z. & Sauce, G., 2009. "A review on transportation of heat energy over long distance: Exploratory development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1532-1540, August.
    8. Nagel, T. & Shao, H. & Roßkopf, C. & Linder, M. & Wörner, A. & Kolditz, O., 2014. "The influence of gas–solid reaction kinetics in models of thermochemical heat storage under monotonic and cyclic loading," Applied Energy, Elsevier, vol. 136(C), pages 289-302.
    9. Stitou, Driss & Mazet, Nathalie & Mauran, Sylvain, 2012. "Experimental investigation of a solid/gas thermochemical storage process for solar air-conditioning," Energy, Elsevier, vol. 41(1), pages 261-270.
    10. Korhammer, Kathrin & Druske, Mona-Maria & Fopah-Lele, Armand & Rammelberg, Holger Urs & Wegscheider, Nina & Opel, Oliver & Osterland, Thomas & Ruck, Wolfgang, 2016. "Sorption and thermal characterization of composite materials based on chlorides for thermal energy storage," Applied Energy, Elsevier, vol. 162(C), pages 1462-1472.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zare Ghorbaei, S. & Ale Ebrahim, H., 2020. "Carbonation reaction of strontium oxide for thermochemical energy storage and CO2 removal applications: Kinetic study and reactor performance prediction," Applied Energy, Elsevier, vol. 277(C).
    2. Shkatulov, A.I. & Houben, J. & Fischer, H. & Huinink, H.P., 2020. "Stabilization of K2CO3 in vermiculite for thermochemical energy storage," Renewable Energy, Elsevier, vol. 150(C), pages 990-1000.
    3. Cabeza, Luisa F. & Solé, Aran & Fontanet, Xavier & Barreneche, Camila & Jové, Aleix & Gallas, Manuel & Prieto, Cristina & Fernández, A. Inés, 2017. "Thermochemical energy storage by consecutive reactions for higher efficient concentrated solar power plants (CSP): Proof of concept," Applied Energy, Elsevier, vol. 185(P1), pages 836-845.
    4. Saman Setoodeh Jahromy & Mudassar Azam & Christian Jordan & Michael Harasek & Franz Winter, 2021. "The Potential Use of Fly Ash from the Pulp and Paper Industry as Thermochemical Energy and CO 2 Storage Material," Energies, MDPI, vol. 14(11), pages 1-21, June.
    5. Flegkas, S. & Birkelbach, F. & Winter, F. & Freiberger, N. & Werner, A., 2018. "Fluidized bed reactors for solid-gas thermochemical energy storage concepts - Modelling and process limitations," Energy, Elsevier, vol. 143(C), pages 615-623.
    6. Schmidt, Matthias & Linder, Marc, 2017. "Power generation based on the Ca(OH)2/ CaO thermochemical storage system – Experimental investigation of discharge operation modes in lab scale and corresponding conceptual process design," Applied Energy, Elsevier, vol. 203(C), pages 594-607.
    7. Donkers, P.A.J. & Sögütoglu, L.C. & Huinink, H.P. & Fischer, H.R. & Adan, O.C.G., 2017. "A review of salt hydrates for seasonal heat storage in domestic applications," Applied Energy, Elsevier, vol. 199(C), pages 45-68.
    8. Knoll, Christian & Müller, Danny & Artner, Werner & Welch, Jan M. & Werner, Andreas & Harasek, Michael & Weinberger, Peter, 2017. "Probing cycle stability and reversibility in thermochemical energy storage – CaC2O4·H2O as perfect match?," Applied Energy, Elsevier, vol. 187(C), pages 1-9.
    9. Peng, Xinyue & Yao, Min & Root, Thatcher W. & Maravelias, Christos T., 2020. "Design and analysis of concentrating solar power plants with fixed-bed reactors for thermochemical energy storage," Applied Energy, Elsevier, vol. 262(C).
    10. Saman Setoodeh Jahromy & Felix Birkelbach & Christian Jordan & Clemens Huber & Michael Harasek & Andreas Werner & Franz Winter, 2019. "Impact of Partial Pressure, Conversion, and Temperature on the Oxidation Reaction Kinetics of Cu 2 O to CuO in Thermochemical Energy Storage," Energies, MDPI, vol. 12(3), pages 1-15, February.
    11. Müller, Danny & Knoll, Christian & Gravogl, Georg & Jordan, Christian & Eitenberger, Elisabeth & Friedbacher, Gernot & Artner, Werner & Welch, Jan M. & Werner, Andreas & Harasek, Michael & Miletich, R, 2021. "Medium-temperature thermochemical energy storage with transition metal ammoniates – A systematic material comparison," Applied Energy, Elsevier, vol. 285(C).
    12. Gravogl, Georg & Knoll, Christian & Artner, Werner & Welch, Jan M. & Eitenberger, Elisabeth & Friedbacher, Gernot & Harasek, Michael & Hradil, Klaudia & Werner, Andreas & Weinberger, Peter & Müller, D, 2019. "Pressure effects on the carbonation of MeO (Me = Co, Mn, Pb, Zn) for thermochemical energy storage," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    13. Müller, Danny & Knoll, Christian & Gravogl, Georg & Artner, Werner & Welch, Jan M. & Eitenberger, Elisabeth & Friedbacher, Gernot & Schreiner, Manfred & Harasek, Michael & Hradil, Klaudia & Werner, An, 2019. "Tuning the performance of MgO for thermochemical energy storage by dehydration – From fundamentals to phase impurities," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    14. Yi Yuan & Yingjie Li & Jianli Zhao, 2018. "Development on Thermochemical Energy Storage Based on CaO-Based Materials: A Review," Sustainability, MDPI, vol. 10(8), pages 1-24, July.
    15. Clemens Huber & Saman Setoodeh Jahromy & Christian Jordan & Manfred Schreiner & Michael Harasek & Andreas Werner & Franz Winter, 2019. "Boric Acid: A High Potential Candidate for Thermochemical Energy Storage," Energies, MDPI, vol. 12(6), pages 1-17, March.
    16. Clark, Ruby-Jean & Farid, Mohammed, 2022. "Experimental investigation into cascade thermochemical energy storage system using SrCl2-cement and zeolite-13X materials," Applied Energy, Elsevier, vol. 316(C).
    17. Mazur, Natalia & Blijlevens, Melian A.R. & Ruliaman, Rick & Fischer, Hartmut & Donkers, Pim & Meekes, Hugo & Vlieg, Elias & Adan, Olaf & Huinink, Henk, 2023. "Revisiting salt hydrate selection for domestic heat storage applications," Renewable Energy, Elsevier, vol. 218(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michel, Benoit & Mazet, Nathalie & Neveu, Pierre, 2016. "Experimental investigation of an open thermochemical process operating with a hydrate salt for thermal storage of solar energy: Local reactive bed evolution," Applied Energy, Elsevier, vol. 180(C), pages 234-244.
    2. Takasu, Hiroki & Hoshino, Hitoshi & Tamura, Yoshiro & Kato, Yukitaka, 2019. "Performance evaluation of thermochemical energy storage system based on lithium orthosilicate and zeolite," Applied Energy, Elsevier, vol. 240(C), pages 1-5.
    3. Cabeza, Luisa F. & Solé, Aran & Barreneche, Camila, 2017. "Review on sorption materials and technologies for heat pumps and thermal energy storage," Renewable Energy, Elsevier, vol. 110(C), pages 3-39.
    4. Scapino, Luca & Zondag, Herbert A. & Van Bael, Johan & Diriken, Jan & Rindt, Camilo C.M., 2017. "Sorption heat storage for long-term low-temperature applications: A review on the advancements at material and prototype scale," Applied Energy, Elsevier, vol. 190(C), pages 920-948.
    5. Takasu, Hiroki & Ryu, Junichi & Kato, Yukitaka, 2017. "Application of lithium orthosilicate for high-temperature thermochemical energy storage," Applied Energy, Elsevier, vol. 193(C), pages 74-83.
    6. Mohamed Zbair & Simona Bennici, 2021. "Survey Summary on Salts Hydrates and Composites Used in Thermochemical Sorption Heat Storage: A Review," Energies, MDPI, vol. 14(11), pages 1-33, May.
    7. Yan, T. & Wang, R.Z. & Li, T.X., 2018. "Experimental investigation on thermochemical heat storage using manganese chloride/ammonia," Energy, Elsevier, vol. 143(C), pages 562-574.
    8. Nagel, Thomas & Beckert, Steffen & Lehmann, Christoph & Gläser, Roger & Kolditz, Olaf, 2016. "Multi-physical continuum models of thermochemical heat storage and transformation in porous media and powder beds—A review," Applied Energy, Elsevier, vol. 178(C), pages 323-345.
    9. Zhang, Yong & Hu, Mingke & Chen, Ziwei & Su, Yuehong & Riffat, Saffa, 2023. "Modelling analysis of a solar-driven thermochemical energy storage unit combined with heat recovery," Renewable Energy, Elsevier, vol. 206(C), pages 722-737.
    10. Isye Hayatina & Amar Auckaili & Mohammed Farid, 2023. "Review on Salt Hydrate Thermochemical Heat Transformer," Energies, MDPI, vol. 16(12), pages 1-23, June.
    11. Gbenou, Tadagbe Roger Sylvanus & Fopah-Lele, Armand & Wang, Kejian, 2022. "Macroscopic and microscopic investigations of low-temperature thermochemical heat storage reactors: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    12. Korhammer, Kathrin & Neumann, Karsten & Opel, Oliver & Ruck, Wolfgang K.L., 2018. "Thermodynamic and kinetic study of CaCl2-CH3OH adducts for solid sorption refrigeration by TGA/DSC," Applied Energy, Elsevier, vol. 230(C), pages 1255-1278.
    13. Fopah-Lele, Armand & Rohde, Christian & Neumann, Karsten & Tietjen, Theo & Rönnebeck, Thomas & N'Tsoukpoe, Kokouvi Edem & Osterland, Thomas & Opel, Oliver & Ruck, Wolfgang K.L., 2016. "Lab-scale experiment of a closed thermochemical heat storage system including honeycomb heat exchanger," Energy, Elsevier, vol. 114(C), pages 225-238.
    14. Mamani, V. & Gutiérrez, A. & Fernández, A.I. & Ushak, S., 2020. "Industrial carnallite-waste for thermochemical energy storage application," Applied Energy, Elsevier, vol. 265(C).
    15. Opel, O. & Strodel, N. & Werner, K.F. & Geffken, J. & Tribel, A. & Ruck, W.K.L., 2017. "Climate-neutral and sustainable campus Leuphana University of Lueneburg," Energy, Elsevier, vol. 141(C), pages 2628-2639.
    16. Pelay, Ugo & Luo, Lingai & Fan, Yilin & Stitou, Driss & Rood, Mark, 2017. "Thermal energy storage systems for concentrated solar power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 82-100.
    17. Gaeini, M. & Rouws, A.L. & Salari, J.W.O. & Zondag, H.A. & Rindt, C.C.M., 2018. "Characterization of microencapsulated and impregnated porous host materials based on calcium chloride for thermochemical energy storage," Applied Energy, Elsevier, vol. 212(C), pages 1165-1177.
    18. Zhang, Yong & Hu, Mingke & Chen, Ziwei & Su, Yuehong & Riffat, Saffa, 2024. "Exploring a novel tubular-type modular reactor for solar-driven thermochemical energy storage," Renewable Energy, Elsevier, vol. 221(C).
    19. Takuya Hatakeyama & Norihiko L. Okamoto & Satoshi Otake & Hiroaki Sato & Hongyi Li & Tetsu Ichitsubo, 2022. "Excellently balanced water-intercalation-type heat-storage oxide," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    20. Li, Wei & Klemeš, Jiří Jaromír & Wang, Qiuwang & Zeng, Min, 2022. "Salt hydrate–based gas-solid thermochemical energy storage: Current progress, challenges, and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:183:y:2016:i:c:p:113-120. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.