IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v124y2014icp1-16.html
   My bibliography  Save this article

A systematic multi-step screening of numerous salt hydrates for low temperature thermochemical energy storage

Author

Listed:
  • N’Tsoukpoe, Kokouvi Edem
  • Schmidt, Thomas
  • Rammelberg, Holger Urs
  • Watts, Beatriz Amanda
  • Ruck, Wolfgang K.L.

Abstract

In this paper, the potential energy storage density and the storage efficiency of salt hydrates as thermochemical storage materials for the storage of heat generated by a micro-combined heat and power (micro-CHP) have been assessed. Because salt hydrates used in various thermochemical heat storage processes fail to meet the expectations, a systematic evaluation of the suitability of 125 salt hydrates has been performed in a three-step approach. In the first step general issues such as toxicity and risk of explosion have been considered. In the second and third steps, the authors implement a combined approach consisting of theoretical calculations and experimental measurements using Thermogravimetric Analysis (TGA). Thus, application-oriented comparison criteria, among which the net energy storage density of the material and the thermal efficiency, have been used to evaluate the potential of 45 preselected salt hydrates for a low temperature thermochemical heat storage application. For an application that requires a discharging temperature above 60°C, SrBr2·6H2O and LaCl3·7H2O appear to be the most promising, only from thermodynamic point of view. However, the maximum net energy storage density including the water in the water storage tank that they offer (respectively 133kWhm−3 and 89kWhm−3) for a classical thermochemical heat storage process are not attractive for the intended application. Furthermore, the thermal efficiency that would result from the storage process based on salt hydrates without condensation heat recovery appears also to be very low (lower than 40% and typically 25%). Even for application requiring lower discharging temperature like 35°C, the expectable efficiency and net energy storage density including the water storage remain low. Alternative processes are needed to implement for salt hydrates in low temperature thermochemical heat storage applications.

Suggested Citation

  • N’Tsoukpoe, Kokouvi Edem & Schmidt, Thomas & Rammelberg, Holger Urs & Watts, Beatriz Amanda & Ruck, Wolfgang K.L., 2014. "A systematic multi-step screening of numerous salt hydrates for low temperature thermochemical energy storage," Applied Energy, Elsevier, vol. 124(C), pages 1-16.
  • Handle: RePEc:eee:appene:v:124:y:2014:i:c:p:1-16
    DOI: 10.1016/j.apenergy.2014.02.053
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261914001974
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2014.02.053?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tatsidjodoung, Parfait & Le Pierrès, Nolwenn & Luo, Lingai, 2013. "A review of potential materials for thermal energy storage in building applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 327-349.
    2. Zondag, Herbert & Kikkert, Benjamin & Smeding, Simon & Boer, Robert de & Bakker, Marco, 2013. "Prototype thermochemical heat storage with open reactor system," Applied Energy, Elsevier, vol. 109(C), pages 360-365.
    3. N’Tsoukpoe, K. Edem & Le Pierrès, Nolwenn & Luo, Lingai, 2012. "Numerical dynamic simulation and analysis of a lithium bromide/water long-term solar heat storage system," Energy, Elsevier, vol. 37(1), pages 346-358.
    4. N'Tsoukpoe, K. Edem & Liu, Hui & Le Pierrès, Nolwenn & Luo, Lingai, 2009. "A review on long-term sorption solar energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2385-2396, December.
    5. Ibrahim, H. & Ilinca, A. & Perron, J., 2008. "Energy storage systems--Characteristics and comparisons," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(5), pages 1221-1250, June.
    6. Le Pierrès, Nolwenn & Stitou, Driss & Mazet, Nathalie, 2007. "New deep-freezing process using renewable low-grade heat: From the conceptual design to experimental results," Energy, Elsevier, vol. 32(4), pages 600-608.
    7. Michel, Benoit & Mazet, Nathalie & Mauran, Sylvain & Stitou, Driss & Xu, Jing, 2012. "Thermochemical process for seasonal storage of solar energy: Characterization and modeling of a high density reactive bed," Energy, Elsevier, vol. 47(1), pages 553-563.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marias, Foivos & Neveu, Pierre & Tanguy, Gwennyn & Papillon, Philippe, 2014. "Thermodynamic analysis and experimental study of solid/gas reactor operating in open mode," Energy, Elsevier, vol. 66(C), pages 757-765.
    2. Michel, Benoit & Neveu, Pierre & Mazet, Nathalie, 2014. "Comparison of closed and open thermochemical processes, for long-term thermal energy storage applications," Energy, Elsevier, vol. 72(C), pages 702-716.
    3. Michel, Benoit & Mazet, Nathalie & Neveu, Pierre, 2016. "Experimental investigation of an open thermochemical process operating with a hydrate salt for thermal storage of solar energy: Local reactive bed evolution," Applied Energy, Elsevier, vol. 180(C), pages 234-244.
    4. N’Tsoukpoe, Kokouvi Edem & Kuznik, Frédéric, 2021. "A reality check on long-term thermochemical heat storage for household applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    5. Solé, Aran & Martorell, Ingrid & Cabeza, Luisa F., 2015. "State of the art on gas–solid thermochemical energy storage systems and reactors for building applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 386-398.
    6. Mohamed Zbair & Simona Bennici, 2021. "Survey Summary on Salts Hydrates and Composites Used in Thermochemical Sorption Heat Storage: A Review," Energies, MDPI, vol. 14(11), pages 1-33, May.
    7. Fumey, Benjamin & Weber, Robert & Baldini, Luca, 2023. "Heat transfer constraints and performance mapping of a closed liquid sorption heat storage process," Applied Energy, Elsevier, vol. 335(C).
    8. Michel, Benoit & Mazet, Nathalie & Neveu, Pierre, 2014. "Experimental investigation of an innovative thermochemical process operating with a hydrate salt and moist air for thermal storage of solar energy: Global performance," Applied Energy, Elsevier, vol. 129(C), pages 177-186.
    9. Lizana, Jesús & Chacartegui, Ricardo & Barrios-Padura, Angela & Ortiz, Carlos, 2018. "Advanced low-carbon energy measures based on thermal energy storage in buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3705-3749.
    10. Barreneche, Camila & Fernández, Ana Inés & Cabeza, Luisa F. & Cuypers, Ruud, 2015. "Thermophysical characterization and thermal cycling stability of two TCM: CaCl2 and zeolite," Applied Energy, Elsevier, vol. 137(C), pages 726-730.
    11. N’Tsoukpoe, Kokouvi Edem & Osterland, Thomas & Opel, Oliver & Ruck, Wolfgang K.L., 2016. "Cascade thermochemical storage with internal condensation heat recovery for better energy and exergy efficiencies," Applied Energy, Elsevier, vol. 181(C), pages 562-574.
    12. N'Tsoukpoe, Kokouvi Edem & Restuccia, Giovanni & Schmidt, Thomas & Py, Xavier, 2014. "The size of sorbents in low pressure sorption or thermochemical energy storage processes," Energy, Elsevier, vol. 77(C), pages 983-998.
    13. Scapino, Luca & Zondag, Herbert A. & Van Bael, Johan & Diriken, Jan & Rindt, Camilo C.M., 2017. "Sorption heat storage for long-term low-temperature applications: A review on the advancements at material and prototype scale," Applied Energy, Elsevier, vol. 190(C), pages 920-948.
    14. Yu, N. & Wang, R.Z. & Lu, Z.S. & Wang, L.W. & Ishugah, T.F., 2014. "Evaluation of a three-phase sorption cycle for thermal energy storage," Energy, Elsevier, vol. 67(C), pages 468-478.
    15. Hamza Ayaz & Veerakumar Chinnasamy & Junhyeok Yong & Honghyun Cho, 2021. "Review of Technologies and Recent Advances in Low-Temperature Sorption Thermal Storage Systems," Energies, MDPI, vol. 14(19), pages 1-36, September.
    16. Nagel, T. & Shao, H. & Roßkopf, C. & Linder, M. & Wörner, A. & Kolditz, O., 2014. "The influence of gas–solid reaction kinetics in models of thermochemical heat storage under monotonic and cyclic loading," Applied Energy, Elsevier, vol. 136(C), pages 289-302.
    17. Lizana, Jesús & Chacartegui, Ricardo & Barrios-Padura, Angela & Valverde, José Manuel, 2017. "Advances in thermal energy storage materials and their applications towards zero energy buildings: A critical review," Applied Energy, Elsevier, vol. 203(C), pages 219-239.
    18. Yu, N. & Wang, R.Z. & Wang, L.W., 2015. "Theoretical and experimental investigation of a closed sorption thermal storage prototype using LiCl/water," Energy, Elsevier, vol. 93(P2), pages 1523-1534.
    19. Donkers, P.A.J. & Sögütoglu, L.C. & Huinink, H.P. & Fischer, H.R. & Adan, O.C.G., 2017. "A review of salt hydrates for seasonal heat storage in domestic applications," Applied Energy, Elsevier, vol. 199(C), pages 45-68.
    20. Nagel, Thomas & Beckert, Steffen & Lehmann, Christoph & Gläser, Roger & Kolditz, Olaf, 2016. "Multi-physical continuum models of thermochemical heat storage and transformation in porous media and powder beds—A review," Applied Energy, Elsevier, vol. 178(C), pages 323-345.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:124:y:2014:i:c:p:1-16. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.