Experimental investigation on thermochemical heat storage using manganese chloride/ammonia
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2017.11.030
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Zhang, Y.N. & Wang, R.Z. & Zhao, Y.J. & Li, T.X. & Riffat, S.B. & Wajid, N.M., 2016. "Development and thermochemical characterizations of vermiculite/SrBr2 composite sorbents for low-temperature heat storage," Energy, Elsevier, vol. 115(P1), pages 120-128.
- Solé, Aran & Martorell, Ingrid & Cabeza, Luisa F., 2015. "State of the art on gas–solid thermochemical energy storage systems and reactors for building applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 386-398.
- Aydin, Devrim & Casey, Sean P. & Riffat, Saffa, 2015. "The latest advancements on thermochemical heat storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 356-367.
- Arteconi, A. & Hewitt, N.J. & Polonara, F., 2012. "State of the art of thermal storage for demand-side management," Applied Energy, Elsevier, vol. 93(C), pages 371-389.
- Shkatulov, Alexandr & Ryu, Junichi & Kato, Yukitaka & Aristov, Yury, 2012. "Composite material “Mg(OH)2/vermiculite”: A promising new candidate for storage of middle temperature heat," Energy, Elsevier, vol. 44(1), pages 1028-1034.
- Zondag, Herbert & Kikkert, Benjamin & Smeding, Simon & Boer, Robert de & Bakker, Marco, 2013. "Prototype thermochemical heat storage with open reactor system," Applied Energy, Elsevier, vol. 109(C), pages 360-365.
- Askalany, Ahmed A. & Salem, M. & Ismael, I.M. & Ali, A.H.H. & Morsy, M.G. & Saha, Bidyut B., 2013. "An overview on adsorption pairs for cooling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 565-572.
- Cot-Gores, Jaume & Castell, Albert & Cabeza, Luisa F., 2012. "Thermochemical energy storage and conversion: A-state-of-the-art review of the experimental research under practical conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 5207-5224.
- Cabeza, Luisa F. & Solé, Aran & Barreneche, Camila, 2017. "Review on sorption materials and technologies for heat pumps and thermal energy storage," Renewable Energy, Elsevier, vol. 110(C), pages 3-39.
- Yan, T. & Wang, R.Z. & Li, T.X. & Wang, L.W. & Fred, Ishugah T., 2015. "A review of promising candidate reactions for chemical heat storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 13-31.
- Yannan Zhang & Ruzhu Wang & Tingxian Li & Yanjie Zhao, 2016. "Thermochemical Characterizations of Novel Vermiculite-LiCl Composite Sorbents for Low-Temperature Heat Storage," Energies, MDPI, vol. 9(10), pages 1-15, October.
- Ma, Q. & Luo, L. & Wang, R.Z. & Sauce, G., 2009. "A review on transportation of heat energy over long distance: Exploratory development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1532-1540, August.
- Korhammer, Kathrin & Druske, Mona-Maria & Fopah-Lele, Armand & Rammelberg, Holger Urs & Wegscheider, Nina & Opel, Oliver & Osterland, Thomas & Ruck, Wolfgang, 2016. "Sorption and thermal characterization of composite materials based on chlorides for thermal energy storage," Applied Energy, Elsevier, vol. 162(C), pages 1462-1472.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Mehrabadi, Abbas & Farid, Mohammed, 2018. "New salt hydrate composite for low-grade thermal energy storage," Energy, Elsevier, vol. 164(C), pages 194-203.
- Jun Li & Tao Zeng & Noriyuki Kobayashi & Haotai Xu & Yu Bai & Lisheng Deng & Zhaohong He & Hongyu Huang, 2019. "Lithium Hydroxide Reaction for Low Temperature Chemical Heat Storage: Hydration and Dehydration Reaction," Energies, MDPI, vol. 12(19), pages 1-13, September.
- Yan, Ting & Kuai, Z.H. & Wu, S.F., 2020. "Experimental investigation on a MnCl2–SrCl2/NH3 thermochemical resorption heat storage system," Renewable Energy, Elsevier, vol. 147(P1), pages 874-883.
- Alicia Crespo & Cèsar Fernández & Alvaro de Gracia & Andrea Frazzica, 2022. "Solar-Driven Sorption System for Seasonal Heat Storage under Optimal Control: Study for Different Climatic Zones," Energies, MDPI, vol. 15(15), pages 1-23, August.
- N’Tsoukpoe, Kokouvi Edem & Kuznik, Frédéric, 2021. "A reality check on long-term thermochemical heat storage for household applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
- Jiang, L. & Li, S. & Wang, R.Q. & Fan, Y.B. & Zhang, X.J. & Roskilly, A.P., 2021. "Performance analysis on a hybrid compression-assisted sorption thermal battery for seasonal heat storage in severe cold region," Renewable Energy, Elsevier, vol. 180(C), pages 398-409.
- Fumey, B. & Weber, R. & Baldini, L., 2019. "Sorption based long-term thermal energy storage – Process classification and analysis of performance limitations: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 57-74.
- Wu, S. & Li, T.X. & Wang, R.Z., 2018. "Experimental identification and thermodynamic analysis of ammonia sorption equilibrium characteristics on halide salts," Energy, Elsevier, vol. 161(C), pages 955-962.
- Wu, S. & Li, T.X. & Yan, T. & Wang, R.Z., 2019. "Advanced thermochemical resorption heat transformer for high-efficiency energy storage and heat transformation," Energy, Elsevier, vol. 175(C), pages 1222-1233.
- Jiang, L. & Liu, W. & Lin, Y.C. & Wang, R.Q. & Zhang, X.J. & Hu, M.K., 2022. "Hybrid thermochemical sorption seasonal storage for ultra-low temperature solar energy utilization," Energy, Elsevier, vol. 239(PB).
- Yan, Ting & Zhang, Hong & Yu, Nan & Li, Dong & Pan, Q.W., 2022. "Performance of thermochemical adsorption heat storage system based on MnCl2-NH3 working pair," Energy, Elsevier, vol. 239(PD).
- Palomba, V. & Lombardo, W. & Groβe, A. & Herrmann, R. & Nitsch, B. & Strehlow, A. & Bastian, R. & Sapienza, A. & Frazzica, A., 2020. "Evaluation of in-situ coated porous structures for hybrid heat pumps," Energy, Elsevier, vol. 209(C).
- Dizaji, Hossein Beidaghy & Hosseini, Hannaneh, 2018. "A review of material screening in pure and mixed-metal oxide thermochemical energy storage (TCES) systems for concentrated solar power (CSP) applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 9-26.
- Zhang, Hong & Yan, Ting & Yu, Nan & Li, Z.H. & Pan, Q.W., 2022. "Sorption based long-term thermal energy storage with strontium chloride/ammonia," Energy, Elsevier, vol. 239(PD).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Mohamed Zbair & Simona Bennici, 2021. "Survey Summary on Salts Hydrates and Composites Used in Thermochemical Sorption Heat Storage: A Review," Energies, MDPI, vol. 14(11), pages 1-33, May.
- Scapino, Luca & Zondag, Herbert A. & Van Bael, Johan & Diriken, Jan & Rindt, Camilo C.M., 2017. "Sorption heat storage for long-term low-temperature applications: A review on the advancements at material and prototype scale," Applied Energy, Elsevier, vol. 190(C), pages 920-948.
- Flegkas, S. & Birkelbach, F. & Winter, F. & Freiberger, N. & Werner, A., 2018. "Fluidized bed reactors for solid-gas thermochemical energy storage concepts - Modelling and process limitations," Energy, Elsevier, vol. 143(C), pages 615-623.
- Cabeza, Luisa F. & Solé, Aran & Barreneche, Camila, 2017. "Review on sorption materials and technologies for heat pumps and thermal energy storage," Renewable Energy, Elsevier, vol. 110(C), pages 3-39.
- Courbon, Emilie & D'Ans, Pierre & Permyakova, Anastasia & Skrylnyk, Oleksandr & Steunou, Nathalie & Degrez, Marc & Frère, Marc, 2017. "A new composite sorbent based on SrBr2 and silica gel for solar energy storage application with high energy storage density and stability," Applied Energy, Elsevier, vol. 190(C), pages 1184-1194.
- Zhang, Y.N. & Wang, R.Z. & Li, T.X., 2017. "Experimental investigation on an open sorption thermal storage system for space heating," Energy, Elsevier, vol. 141(C), pages 2421-2433.
- Gordeeva, L.G. & Aristov, Yu.I., 2019. "Adsorptive heat storage and amplification: New cycles and adsorbents," Energy, Elsevier, vol. 167(C), pages 440-453.
- Finck, Christian & Li, Rongling & Kramer, Rick & Zeiler, Wim, 2018. "Quantifying demand flexibility of power-to-heat and thermal energy storage in the control of building heating systems," Applied Energy, Elsevier, vol. 209(C), pages 409-425.
- Xu, J.X. & Li, T.X. & Chao, J.W. & Yan, T.S. & Wang, R.Z., 2019. "High energy-density multi-form thermochemical energy storage based on multi-step sorption processes," Energy, Elsevier, vol. 185(C), pages 1131-1142.
- Stylianos Flegkas & Felix Birkelbach & Franz Winter & Hans Groenewold & Andreas Werner, 2019. "Profitability Analysis and Capital Cost Estimation of a Thermochemical Energy Storage System Utilizing Fluidized Bed Reactors and the Reaction System MgO/Mg(OH) 2," Energies, MDPI, vol. 12(24), pages 1-16, December.
- Yi Yuan & Yingjie Li & Jianli Zhao, 2018. "Development on Thermochemical Energy Storage Based on CaO-Based Materials: A Review," Sustainability, MDPI, vol. 10(8), pages 1-24, July.
- Scapino, Luca & Zondag, Herbert A. & Van Bael, Johan & Diriken, Jan & Rindt, Camilo C.M., 2017. "Energy density and storage capacity cost comparison of conceptual solid and liquid sorption seasonal heat storage systems for low-temperature space heating," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1314-1331.
- Böhm, Hans & Lindorfer, Johannes, 2019. "Techno-economic assessment of seasonal heat storage in district heating with thermochemical materials," Energy, Elsevier, vol. 179(C), pages 1246-1264.
- Gbenou, Tadagbe Roger Sylvanus & Fopah-Lele, Armand & Wang, Kejian, 2022. "Macroscopic and microscopic investigations of low-temperature thermochemical heat storage reactors: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
- Takuya Hatakeyama & Norihiko L. Okamoto & Satoshi Otake & Hiroaki Sato & Hongyi Li & Tetsu Ichitsubo, 2022. "Excellently balanced water-intercalation-type heat-storage oxide," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
- Li, Wei & Klemeš, Jiří Jaromír & Wang, Qiuwang & Zeng, Min, 2022. "Salt hydrate–based gas-solid thermochemical energy storage: Current progress, challenges, and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
- Kuznik, Frédéric & Johannes, Kevyn & Obrecht, Christian & David, Damien, 2018. "A review on recent developments in physisorption thermal energy storage for building applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 576-586.
- Deutsch, Markus & Müller, Danny & Aumeyr, Christian & Jordan, Christian & Gierl-Mayer, Christian & Weinberger, Peter & Winter, Franz & Werner, Andreas, 2016. "Systematic search algorithm for potential thermochemical energy storage systems," Applied Energy, Elsevier, vol. 183(C), pages 113-120.
- Ait Ousaleh, Hanane & Sair, Said & Zaki, Abdelali & Younes, Abboud & Faik, Abdessamad & El Bouari, Abdeslam, 2020. "Advanced experimental investigation of double hydrated salts and their composite for improved cycling stability and metal compatibility for long-term heat storage technologies," Renewable Energy, Elsevier, vol. 162(C), pages 447-457.
- Michel, Benoit & Mazet, Nathalie & Neveu, Pierre, 2016. "Experimental investigation of an open thermochemical process operating with a hydrate salt for thermal storage of solar energy: Local reactive bed evolution," Applied Energy, Elsevier, vol. 180(C), pages 234-244.
More about this item
Keywords
Thermal energy storage; Thermochemical heat storage; Composite materials; Manganese chloride; Ammonia;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:143:y:2018:i:c:p:562-574. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.