Characterization of microencapsulated and impregnated porous host materials based on calcium chloride for thermochemical energy storage
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2017.12.131
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Barreneche, Camila & Fernández, Ana Inés & Cabeza, Luisa F. & Cuypers, Ruud, 2015. "Thermophysical characterization and thermal cycling stability of two TCM: CaCl2 and zeolite," Applied Energy, Elsevier, vol. 137(C), pages 726-730.
- Donkers, P.A.J. & Sögütoglu, L.C. & Huinink, H.P. & Fischer, H.R. & Adan, O.C.G., 2017. "A review of salt hydrates for seasonal heat storage in domestic applications," Applied Energy, Elsevier, vol. 199(C), pages 45-68.
- Scapino, Luca & Zondag, Herbert A. & Van Bael, Johan & Diriken, Jan & Rindt, Camilo C.M., 2017. "Sorption heat storage for long-term low-temperature applications: A review on the advancements at material and prototype scale," Applied Energy, Elsevier, vol. 190(C), pages 920-948.
- N’Tsoukpoe, Kokouvi Edem & Schmidt, Thomas & Rammelberg, Holger Urs & Watts, Beatriz Amanda & Ruck, Wolfgang K.L., 2014. "A systematic multi-step screening of numerous salt hydrates for low temperature thermochemical energy storage," Applied Energy, Elsevier, vol. 124(C), pages 1-16.
- N'Tsoukpoe, K. Edem & Liu, Hui & Le Pierrès, Nolwenn & Luo, Lingai, 2009. "A review on long-term sorption solar energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2385-2396, December.
- Milián, Yanio E. & Gutiérrez, Andrea & Grágeda, Mario & Ushak, Svetlana, 2017. "A review on encapsulation techniques for inorganic phase change materials and the influence on their thermophysical properties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 983-999.
- Johannes, Kévyn & Kuznik, Frédéric & Hubert, Jean-Luc & Durier, Francois & Obrecht, Christian, 2015. "Design and characterisation of a high powered energy dense zeolite thermal energy storage system for buildings," Applied Energy, Elsevier, vol. 159(C), pages 80-86.
- Michel, Benoit & Neveu, Pierre & Mazet, Nathalie, 2014. "Comparison of closed and open thermochemical processes, for long-term thermal energy storage applications," Energy, Elsevier, vol. 72(C), pages 702-716.
- Michel, Benoit & Mazet, Nathalie & Neveu, Pierre, 2014. "Experimental investigation of an innovative thermochemical process operating with a hydrate salt and moist air for thermal storage of solar energy: Global performance," Applied Energy, Elsevier, vol. 129(C), pages 177-186.
- Scapino, Luca & Zondag, Herbert A. & Van Bael, Johan & Diriken, Jan & Rindt, Camilo C.M., 2017. "Energy density and storage capacity cost comparison of conceptual solid and liquid sorption seasonal heat storage systems for low-temperature space heating," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1314-1331.
- Fopah Lele, Armand & Kuznik, Frédéric & Rammelberg, Holger U. & Schmidt, Thomas & Ruck, Wolfgang K.L., 2015. "Thermal decomposition kinetic of salt hydrates for heat storage systems," Applied Energy, Elsevier, vol. 154(C), pages 447-458.
- Zondag, Herbert & Kikkert, Benjamin & Smeding, Simon & Boer, Robert de & Bakker, Marco, 2013. "Prototype thermochemical heat storage with open reactor system," Applied Energy, Elsevier, vol. 109(C), pages 360-365.
- Solé, Aran & Martorell, Ingrid & Cabeza, Luisa F., 2015. "State of the art on gas–solid thermochemical energy storage systems and reactors for building applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 386-398.
- Korhammer, Kathrin & Druske, Mona-Maria & Fopah-Lele, Armand & Rammelberg, Holger Urs & Wegscheider, Nina & Opel, Oliver & Osterland, Thomas & Ruck, Wolfgang, 2016. "Sorption and thermal characterization of composite materials based on chlorides for thermal energy storage," Applied Energy, Elsevier, vol. 162(C), pages 1462-1472.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Yihan Wang & Zicheng Zhang & Shuli Liu & Zhihao Wang & Yongliang Shen, 2023. "Development and Characteristics Analysis of Novel Hydrated Salt Composite Adsorbents for Thermochemical Energy Storage," Energies, MDPI, vol. 16(18), pages 1-21, September.
- Shkatulov, A.I. & Houben, J. & Fischer, H. & Huinink, H.P., 2020. "Stabilization of K2CO3 in vermiculite for thermochemical energy storage," Renewable Energy, Elsevier, vol. 150(C), pages 990-1000.
- Emanuela Mastronardo & Emanuele La Mazza & Davide Palamara & Elpida Piperopoulos & Daniela Iannazzo & Edoardo Proverbio & Candida Milone, 2022. "Organic Salt Hydrate as a Novel Paradigm for Thermal Energy Storage," Energies, MDPI, vol. 15(12), pages 1-13, June.
- Chumnanwat, Suppanat & Watanabe, Yuto & Taniguchi, Naoko & Higashi, Hidenori & Kodama, Akio & Seto, Takafumi & Otani, Yoshio & Kumita, Mikio, 2020. "Pore structure control of anodized alumina film and sorption properties of water vapor on CaCl2-aluminum composites," Energy, Elsevier, vol. 208(C).
- Palacios, Anabel & Elena Navarro, M. & Barreneche, Camila & Ding, Yulong, 2020. "Hybrid 3 in 1 thermal energy storage system – Outlook for a novel storage strategy," Applied Energy, Elsevier, vol. 274(C).
- Shkatulov, Alexandr & Gordeeva, Larisa G. & Girnik, Ilya S. & Huinink, Henk & Aristov, Yuri I., 2020. "Novel adsorption method for moisture and heat recuperation in ventilation: Composites “LiCl/matrix” tailored for cold climate," Energy, Elsevier, vol. 201(C).
- Salviati, Sergio & Carosio, Federico & Cantamessa, Francesco & Medina, Lilian & Berglund, Lars A. & Saracco, Guido & Fina, Alberto, 2020. "Ice-templated nanocellulose porous structure enhances thermochemical storage kinetics in hydrated salt/graphite composites," Renewable Energy, Elsevier, vol. 160(C), pages 698-706.
- Ji, Wenjie & Zhang, Heng & Liu, Shuli & Wang, Zhihao & Deng, Shihan, 2022. "An experimental study on the binary hydrated salt composite zeolite for improving thermochemical energy storage performance," Renewable Energy, Elsevier, vol. 194(C), pages 1163-1173.
- El-Sheekh, Mostafa M. & Bedaiwy, Mohammed Y. & El-Nagar, Aya A. & ElKelawy, Medhat & Alm-Eldin Bastawissi, Hagar, 2022. "Ethanol biofuel production and characteristics optimization from wheat straw hydrolysate: Performance and emission study of DI-diesel engine fueled with diesel/biodiesel/ethanol blends," Renewable Energy, Elsevier, vol. 191(C), pages 591-607.
- Björn Nienborg & Tobias Helling & Dominik Fröhlich & Rafael Horn & Gunther Munz & Peter Schossig, 2018. "Closed Adsorption Heat Storage—A Life Cycle Assessment on Material and Component Levels," Energies, MDPI, vol. 11(12), pages 1-16, December.
- Hui Yang & Chengcheng Wang & Lige Tong & Shaowu Yin & Li Wang & Yulong Ding, 2023. "Salt Hydrate Adsorption Material-Based Thermochemical Energy Storage for Space Heating Application: A Review," Energies, MDPI, vol. 16(6), pages 1-54, March.
- Li, Wei & Klemeš, Jiří Jaromír & Wang, Qiuwang & Zeng, Min, 2021. "Numerical analysis on the improved thermo-chemical behaviour of hierarchical energy materials as a cascaded thermal accumulator," Energy, Elsevier, vol. 232(C).
- Benjamin Fumey & Luca Baldini, 2021. "Static Temperature Guideline for Comparative Testing of Sorption Heat Storage Systems for Building Application," Energies, MDPI, vol. 14(13), pages 1-15, June.
- Li, Wei & Klemeš, Jiří Jaromír & Wang, Qiuwang & Zeng, Min, 2022. "Salt hydrate–based gas-solid thermochemical energy storage: Current progress, challenges, and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
- Scapino, Luca & Zondag, Herbert A. & Diriken, Jan & Rindt, Camilo C.M. & Van Bael, Johan & Sciacovelli, Adriano, 2019. "Modeling the performance of a sorption thermal energy storage reactor using artificial neural networks," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
- Bennici, Simona & Dutournié, Patrick & Cathalan, Jérémy & Zbair, Mohamed & Nguyen, Minh Hoang & Scuiller, Elliot & Vaulot, Cyril, 2022. "Heat storage: Hydration investigation of MgSO4/active carbon composites, from material development to domestic applications scenarios," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
- Wyttenbach, Joël & Bougard, Jacques & Descy, Gilbert & Skrylnyk, Oleksandr & Courbon, Emilie & Frère, Marc & Bruyat, Fabien, 2018. "Performances and modelling of a circular moving bed thermochemical reactor for seasonal storage," Applied Energy, Elsevier, vol. 230(C), pages 803-815.
- Bryan Li & Louise Buisson & Ruby-Jean Clark & Svetlana Ushak & Mohammed Farid, 2024. "A Eutectic Mixture of Calcium Chloride Hexahydrate and Bischofite with Promising Performance for Thermochemical Energy Storage," Energies, MDPI, vol. 17(3), pages 1-18, January.
- Mazur, Natalia & Blijlevens, Melian A.R. & Ruliaman, Rick & Fischer, Hartmut & Donkers, Pim & Meekes, Hugo & Vlieg, Elias & Adan, Olaf & Huinink, Henk, 2023. "Revisiting salt hydrate selection for domestic heat storage applications," Renewable Energy, Elsevier, vol. 218(C).
- Zhang, Yong & Hu, Mingke & Chen, Ziwei & Su, Yuehong & Riffat, Saffa, 2024. "Exploring a novel tubular-type modular reactor for solar-driven thermochemical energy storage," Renewable Energy, Elsevier, vol. 221(C).
- Liu, Xiao & Liu, Xin & Yang, Fangming & Wu, Yupeng, 2024. "Experimental investigation of low-temperature fluidised bed thermochemical energy storage with salt-mesoporous silica composite materials," Applied Energy, Elsevier, vol. 362(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Michel, Benoit & Mazet, Nathalie & Neveu, Pierre, 2016. "Experimental investigation of an open thermochemical process operating with a hydrate salt for thermal storage of solar energy: Local reactive bed evolution," Applied Energy, Elsevier, vol. 180(C), pages 234-244.
- Scapino, Luca & Zondag, Herbert A. & Van Bael, Johan & Diriken, Jan & Rindt, Camilo C.M., 2017. "Sorption heat storage for long-term low-temperature applications: A review on the advancements at material and prototype scale," Applied Energy, Elsevier, vol. 190(C), pages 920-948.
- N’Tsoukpoe, Kokouvi Edem & Kuznik, Frédéric, 2021. "A reality check on long-term thermochemical heat storage for household applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
- Mohamed Zbair & Simona Bennici, 2021. "Survey Summary on Salts Hydrates and Composites Used in Thermochemical Sorption Heat Storage: A Review," Energies, MDPI, vol. 14(11), pages 1-33, May.
- Fumey, B. & Weber, R. & Baldini, L., 2019. "Sorption based long-term thermal energy storage – Process classification and analysis of performance limitations: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 57-74.
- Li, Wei & Klemeš, Jiří Jaromír & Wang, Qiuwang & Zeng, Min, 2022. "Salt hydrate–based gas-solid thermochemical energy storage: Current progress, challenges, and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
- Kuznik, Frédéric & Johannes, Kevyn & Obrecht, Christian & David, Damien, 2018. "A review on recent developments in physisorption thermal energy storage for building applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 576-586.
- Scapino, Luca & Zondag, Herbert A. & Diriken, Jan & Rindt, Camilo C.M. & Van Bael, Johan & Sciacovelli, Adriano, 2019. "Modeling the performance of a sorption thermal energy storage reactor using artificial neural networks," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
- Mukherjee, Ankit & Pujari, Ankush Shankar & Shinde, Shraddha Nitin & Kashyap, Uddip & Kumar, Lalit & Subramaniam, Chandramouli & Saha, Sandip K., 2022. "Performance assessment of open thermochemical energy storage system for seasonal space heating in highly humid environment," Renewable Energy, Elsevier, vol. 201(P1), pages 204-223.
- Donkers, P.A.J. & Sögütoglu, L.C. & Huinink, H.P. & Fischer, H.R. & Adan, O.C.G., 2017. "A review of salt hydrates for seasonal heat storage in domestic applications," Applied Energy, Elsevier, vol. 199(C), pages 45-68.
- Wyttenbach, Joël & Bougard, Jacques & Descy, Gilbert & Skrylnyk, Oleksandr & Courbon, Emilie & Frère, Marc & Bruyat, Fabien, 2018. "Performances and modelling of a circular moving bed thermochemical reactor for seasonal storage," Applied Energy, Elsevier, vol. 230(C), pages 803-815.
- Aydin, Devrim & Casey, Sean P. & Chen, Xiangjie & Riffat, Saffa, 2018. "Numerical and experimental analysis of a novel heat pump driven sorption storage heater," Applied Energy, Elsevier, vol. 211(C), pages 954-974.
- Li, Wei & Klemeš, Jiří Jaromír & Wang, Qiuwang & Zeng, Min, 2020. "Development and characteristics analysis of salt-hydrate based composite sorbent for low-grade thermochemical energy storage," Renewable Energy, Elsevier, vol. 157(C), pages 920-940.
- Zhang, Y.N. & Wang, R.Z. & Li, T.X., 2017. "Experimental investigation on an open sorption thermal storage system for space heating," Energy, Elsevier, vol. 141(C), pages 2421-2433.
- N’Tsoukpoe, Kokouvi Edem & Osterland, Thomas & Opel, Oliver & Ruck, Wolfgang K.L., 2016. "Cascade thermochemical storage with internal condensation heat recovery for better energy and exergy efficiencies," Applied Energy, Elsevier, vol. 181(C), pages 562-574.
- Scapino, Luca & Zondag, Herbert A. & Van Bael, Johan & Diriken, Jan & Rindt, Camilo C.M., 2017. "Energy density and storage capacity cost comparison of conceptual solid and liquid sorption seasonal heat storage systems for low-temperature space heating," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1314-1331.
- Isye Hayatina & Amar Auckaili & Mohammed Farid, 2023. "Review on Salt Hydrate Thermochemical Heat Transformer," Energies, MDPI, vol. 16(12), pages 1-23, June.
- Gbenou, Tadagbe Roger Sylvanus & Fopah-Lele, Armand & Wang, Kejian, 2022. "Macroscopic and microscopic investigations of low-temperature thermochemical heat storage reactors: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
- Kong, Hui & Hao, Yong & Jin, Hongguang, 2018. "Isothermal versus two-temperature solar thermochemical fuel synthesis: A comparative study," Applied Energy, Elsevier, vol. 228(C), pages 301-308.
- Hui Yang & Chengcheng Wang & Lige Tong & Shaowu Yin & Li Wang & Yulong Ding, 2023. "Salt Hydrate Adsorption Material-Based Thermochemical Energy Storage for Space Heating Application: A Review," Energies, MDPI, vol. 16(6), pages 1-54, March.
More about this item
Keywords
Thermochemical heat storage; Calcium chloride composites; Microencapsulation and impregnated; Stability; Kinetics and energy storage density; TGA-DSC;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:212:y:2018:i:c:p:1165-1177. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.