IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v179y2016icp1152-1165.html
   My bibliography  Save this article

Fuel consumption and CO2 emissions of passenger cars over the New Worldwide Harmonized Test Protocol

Author

Listed:
  • Tsokolis, D.
  • Tsiakmakis, S.
  • Dimaratos, A.
  • Fontaras, G.
  • Pistikopoulos, P.
  • Ciuffo, B.
  • Samaras, Z.

Abstract

In 2014 the United Nations Economic Commission for Europe (UNECE) adopted the global technical regulation No. 15 concerning the Worldwide harmonized Light duty Test Procedure (WLTP). Having significantly contributed to its development, the European Commission is now aiming at introducing the new test procedure in the European type-approval legislation for light duty vehicles in order to replace the New European Driving Cycle (NEDC) as the certification test.

Suggested Citation

  • Tsokolis, D. & Tsiakmakis, S. & Dimaratos, A. & Fontaras, G. & Pistikopoulos, P. & Ciuffo, B. & Samaras, Z., 2016. "Fuel consumption and CO2 emissions of passenger cars over the New Worldwide Harmonized Test Protocol," Applied Energy, Elsevier, vol. 179(C), pages 1152-1165.
  • Handle: RePEc:eee:appene:v:179:y:2016:i:c:p:1152-1165
    DOI: 10.1016/j.apenergy.2016.07.091
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261916310327
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2016.07.091?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Galvin, Ray, 2016. "Rebound effects from speed and acceleration in electric and internal combustion engine cars: An empirical and conceptual investigation," Applied Energy, Elsevier, vol. 172(C), pages 207-216.
    2. Ntziachristos, L. & Mellios, G. & Tsokolis, D. & Keller, M. & Hausberger, S. & Ligterink, N.E. & Dilara, P., 2014. "In-use vs. type-approval fuel consumption of current passenger cars in Europe," Energy Policy, Elsevier, vol. 67(C), pages 403-411.
    3. Rangaraju, Surendraprabu & De Vroey, Laurent & Messagie, Maarten & Mertens, Jan & Van Mierlo, Joeri, 2015. "Impacts of electricity mix, charging profile, and driving behavior on the emissions performance of battery electric vehicles: A Belgian case study," Applied Energy, Elsevier, vol. 148(C), pages 496-505.
    4. Pavlovic, Jelica & Marotta, Alessandro & Ciuffo, Biagio, 2016. "CO2 emissions and energy demands of vehicles tested under the NEDC and the new WLTP type approval test procedures," Applied Energy, Elsevier, vol. 177(C), pages 661-670.
    5. Millo, Federico & Rolando, Luciano & Fuso, Rocco & Mallamo, Fabio, 2014. "Real CO2 emissions benefits and end user’s operating costs of a plug-in Hybrid Electric Vehicle," Applied Energy, Elsevier, vol. 114(C), pages 563-571.
    6. Zamboni, Giorgio & Moggia, Simone & Capobianco, Massimo, 2016. "Hybrid EGR and turbocharging systems control for low NOX and fuel consumption in an automotive diesel engine," Applied Energy, Elsevier, vol. 165(C), pages 839-848.
    7. Demuynck, Joachim & Bosteels, Dirk & De Paepe, Michel & Favre, Cécile & May, John & Verhelst, Sebastian, 2012. "Recommendations for the new WLTP cycle based on an analysis of vehicle emission measurements on NEDC and CADC," Energy Policy, Elsevier, vol. 49(C), pages 234-242.
    8. Dardiotis, Christos & Martini, Giorgio & Marotta, Alessandro & Manfredi, Urbano, 2013. "Low-temperature cold-start gaseous emissions of late technology passenger cars," Applied Energy, Elsevier, vol. 111(C), pages 468-478.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nils Hooftman & Luis Oliveira & Maarten Messagie & Thierry Coosemans & Joeri Van Mierlo, 2016. "Environmental Analysis of Petrol, Diesel and Electric Passenger Cars in a Belgian Urban Setting," Energies, MDPI, vol. 9(2), pages 1-24, January.
    2. Ko, Jinyoung & Jin, Dongyoung & Jang, Wonwook & Myung, Cha-Lee & Kwon, Sangil & Park, Simsoo, 2017. "Comparative investigation of NOx emission characteristics from a Euro 6-compliant diesel passenger car over the NEDC and WLTC at various ambient temperatures," Applied Energy, Elsevier, vol. 187(C), pages 652-662.
    3. Deng, Yuanwang & Liu, Huawei & Zhao, Xiaohuan & E, Jiaqiang & Chen, Jianmei, 2018. "Effects of cold start control strategy on cold start performance of the diesel engine based on a comprehensive preheat diesel engine model," Applied Energy, Elsevier, vol. 210(C), pages 279-287.
    4. Han, Dandan & E, Jiaqiang & Deng, Yuanwang & Chen, Jingwei & Leng, Erwei & Liao, Gaoliang & Zhao, Xiaohuan & Feng, Changling & Zhang, Feng, 2021. "A review of studies using hydrocarbon adsorption material for reducing hydrocarbon emissions from cold start of gasoline engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    5. Fan, Pengfei & Yin, Hang & Lu, Hongyu & Wu, Yizheng & Zhai, Zhiqiang & Yu, Lei & Song, Guohua, 2023. "Which factor contributes more to the fuel consumption gap between in-laboratory vs. real-world driving conditions? An independent component analysis," Energy Policy, Elsevier, vol. 182(C).
    6. Tietge, Uwe & Mock, Peter & Franco, Vicente & Zacharof, Nikiforos, 2017. "From laboratory to road: Modeling the divergence between official and real-world fuel consumption and CO2 emission values in the German passenger car market for the years 2001–2014," Energy Policy, Elsevier, vol. 103(C), pages 212-222.
    7. Zhao, Jinxing, 2017. "Research and application of over-expansion cycle (Atkinson and Miller) engines – A review," Applied Energy, Elsevier, vol. 185(P1), pages 300-319.
    8. Küng, Lukas & Bütler, Thomas & Georges, Gil & Boulouchos, Konstantinos, 2019. "How much energy does a car need on the road?," Applied Energy, Elsevier, vol. 256(C).
    9. Tsiakmakis, Stefanos & Fontaras, Georgios & Ciuffo, Biagio & Samaras, Zissis, 2017. "A simulation-based methodology for quantifying European passenger car fleet CO2 emissions," Applied Energy, Elsevier, vol. 199(C), pages 447-465.
    10. Hooftman, Nils & Messagie, Maarten & Van Mierlo, Joeri & Coosemans, Thierry, 2018. "A review of the European passenger car regulations – Real driving emissions vs local air quality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 86(C), pages 1-21.
    11. Tsiakmakis, Stefanos & Fontaras, Georgios & Dornoff, Jan & Valverde, Victor & Komnos, Dimitrios & Ciuffo, Biagio & Mock, Peter & Samaras, Zissis, 2019. "From lab-to-road & vice-versa: Using a simulation-based approach for predicting real-world CO2 emissions," Energy, Elsevier, vol. 169(C), pages 1153-1165.
    12. Triantafyllopoulos, Georgios & Kontses, Anastasios & Tsokolis, Dimitrios & Ntziachristos, Leonidas & Samaras, Zissis, 2017. "Potential of energy efficiency technologies in reducing vehicle consumption under type approval and real world conditions," Energy, Elsevier, vol. 140(P1), pages 365-373.
    13. Karol Tucki & Andrzej Wasiak & Olga Orynycz & Remigiusz Mruk, 2020. "Computer Simulation as a Tool for Managing the Technical Development of Methods for Diagnosing the Technical Condition of a Vehicle," Energies, MDPI, vol. 13(11), pages 1-24, June.
    14. Ke, Wenwei & Zhang, Shaojun & He, Xiaoyi & Wu, Ye & Hao, Jiming, 2017. "Well-to-wheels energy consumption and emissions of electric vehicles: Mid-term implications from real-world features and air pollution control progress," Applied Energy, Elsevier, vol. 188(C), pages 367-377.
    15. Yuan Qiao & Yizhou Song & Kaisheng Huang, 2019. "A Novel Control Algorithm Design for Hybrid Electric Vehicles Considering Energy Consumption and Emission Performance," Energies, MDPI, vol. 12(14), pages 1-28, July.
    16. Karan, Ebrahim & Mohammadpour, Atefeh & Asadi, Somayeh, 2016. "Integrating building and transportation energy use to design a comprehensive greenhouse gas mitigation strategy," Applied Energy, Elsevier, vol. 165(C), pages 234-243.
    17. Zhang, Shaojun & Wu, Ye & Un, Puikei & Fu, Lixin & Hao, Jiming, 2016. "Modeling real-world fuel consumption and carbon dioxide emissions with high resolution for light-duty passenger vehicles in a traffic populated city," Energy, Elsevier, vol. 113(C), pages 461-471.
    18. Youssef Amry & Elhoussin Elbouchikhi & Franck Le Gall & Mounir Ghogho & Soumia El Hani, 2022. "Electric Vehicle Traction Drives and Charging Station Power Electronics: Current Status and Challenges," Energies, MDPI, vol. 15(16), pages 1-30, August.
    19. Baek, Seungju & Lee, Hyeonjik & Lee, Kihyung, 2021. "Fuel efficiency and exhaust characteristics of turbocharged diesel engine equipped with an electric supercharger," Energy, Elsevier, vol. 214(C).
    20. Xinglong Liu & Fuquan Zhao & Han Hao & Kangda Chen & Zongwei Liu & Hassan Babiker & Amer Ahmad Amer, 2020. "From NEDC to WLTP: Effect on the Energy Consumption, NEV Credits, and Subsidies Policies of PHEV in the Chinese Market," Sustainability, MDPI, vol. 12(14), pages 1-19, July.

    More about this item

    Keywords

    CO2 emissions; NEDC; WLTP; European Regulation;
    All these keywords.

    JEL classification:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:179:y:2016:i:c:p:1152-1165. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.