IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v9y2016i2p84-d63112.html
   My bibliography  Save this article

Environmental Analysis of Petrol, Diesel and Electric Passenger Cars in a Belgian Urban Setting

Author

Listed:
  • Nils Hooftman

    (Electrotechnical Engineering and Energy Technology, MOBI Research Group, Vrije Universiteit Brussel, Pleinlaan 2, Brussels 1050, Belgium
    These authors contributed equally to this work.)

  • Luis Oliveira

    (Electrotechnical Engineering and Energy Technology, MOBI Research Group, Vrije Universiteit Brussel, Pleinlaan 2, Brussels 1050, Belgium
    These authors contributed equally to this work.)

  • Maarten Messagie

    (Electrotechnical Engineering and Energy Technology, MOBI Research Group, Vrije Universiteit Brussel, Pleinlaan 2, Brussels 1050, Belgium)

  • Thierry Coosemans

    (Electrotechnical Engineering and Energy Technology, MOBI Research Group, Vrije Universiteit Brussel, Pleinlaan 2, Brussels 1050, Belgium)

  • Joeri Van Mierlo

    (Electrotechnical Engineering and Energy Technology, MOBI Research Group, Vrije Universiteit Brussel, Pleinlaan 2, Brussels 1050, Belgium)

Abstract

The combustion of fossil fuels in the transport sector leads to an aggravation of the air quality along city roads and highways. Urban air quality is a serious problem nowadays as the number of vehicles increases on a yearly basis. With stricter Euro emission regulations, vehicle manufacturers are not meeting the imposed limits and are also disregarding the non-exhaust emissions. This paper highlights the relevance of non-exhaust emissions of passenger vehicles, both conventional (diesel and petrol) or electric vehicles (EV), on air quality levels in an urban environment in Belgium. An environmental life cycle assessment was carried out based on a real-world emission model for passenger cars and fuel refinery data. A cut-off was applied to the models to highlight what emissions, both from the refinery to the exhaust and electricity production for EV, do actually occur within Belgium’s borders. Results show that not much progress has been made from Euro 4 to 6 for conventional vehicles. Electric vehicles pose the best alternative solution as a more environmentally friendly means of transportation. The analysis results target policy makers with the intention that regulations and policies would be developed in the future and target the characterization of non-exhaust emissions from vehicles. These results indicate that EVs offer a valid solution for addressing the urban air quality issue and that non-exhaust emissions should be addressed in future regulatory steps as they dominate the impact spectrum.

Suggested Citation

  • Nils Hooftman & Luis Oliveira & Maarten Messagie & Thierry Coosemans & Joeri Van Mierlo, 2016. "Environmental Analysis of Petrol, Diesel and Electric Passenger Cars in a Belgian Urban Setting," Energies, MDPI, vol. 9(2), pages 1-24, January.
  • Handle: RePEc:gam:jeners:v:9:y:2016:i:2:p:84-:d:63112
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/9/2/84/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/9/2/84/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Elliot Fishman & Christopher Cherry, 2016. "E-bikes in the Mainstream: Reviewing a Decade of Research," Transport Reviews, Taylor & Francis Journals, vol. 36(1), pages 72-91, January.
    2. Maarten Messagie & Fayçal Boureima & Jan Mertens & Javier Sanfelix & Cathy Macharis & Joeri Van Mierlo, 2013. "The Influence of Allocation on the Carbon Footprint of Electricity Production from Waste Gas, a Case Study for Blast Furnace Gas," Energies, MDPI, vol. 6(3), pages 1-16, March.
    3. Zhang, Shaojun & Wu, Ye & Liu, Huan & Huang, Ruikun & Un, Puikei & Zhou, Yu & Fu, Lixin & Hao, Jiming, 2014. "Real-world fuel consumption and CO2 (carbon dioxide) emissions by driving conditions for light-duty passenger vehicles in China," Energy, Elsevier, vol. 69(C), pages 247-257.
    4. Ntziachristos, L. & Mellios, G. & Tsokolis, D. & Keller, M. & Hausberger, S. & Ligterink, N.E. & Dilara, P., 2014. "In-use vs. type-approval fuel consumption of current passenger cars in Europe," Energy Policy, Elsevier, vol. 67(C), pages 403-411.
    5. Demuynck, Joachim & Bosteels, Dirk & De Paepe, Michel & Favre, Cécile & May, John & Verhelst, Sebastian, 2012. "Recommendations for the new WLTP cycle based on an analysis of vehicle emission measurements on NEDC and CADC," Energy Policy, Elsevier, vol. 49(C), pages 234-242.
    6. Cedric De Cauwer & Joeri Van Mierlo & Thierry Coosemans, 2015. "Energy Consumption Prediction for Electric Vehicles Based on Real-World Data," Energies, MDPI, vol. 8(8), pages 1-21, August.
    7. Foley, Aoife & Tyther, Barry & Calnan, Patrick & Ó Gallachóir, Brian, 2013. "Impacts of Electric Vehicle charging under electricity market operations," Applied Energy, Elsevier, vol. 101(C), pages 93-102.
    8. Messagie, Maarten & Mertens, Jan & Oliveira, Luis & Rangaraju, Surendraprabu & Sanfelix, Javier & Coosemans, Thierry & Van Mierlo, Joeri & Macharis, Cathy, 2014. "The hourly life cycle carbon footprint of electricity generation in Belgium, bringing a temporal resolution in life cycle assessment," Applied Energy, Elsevier, vol. 134(C), pages 469-476.
    9. Rangaraju, Surendraprabu & De Vroey, Laurent & Messagie, Maarten & Mertens, Jan & Van Mierlo, Joeri, 2015. "Impacts of electricity mix, charging profile, and driving behavior on the emissions performance of battery electric vehicles: A Belgian case study," Applied Energy, Elsevier, vol. 148(C), pages 496-505.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tsiakmakis, Stefanos & Fontaras, Georgios & Dornoff, Jan & Valverde, Victor & Komnos, Dimitrios & Ciuffo, Biagio & Mock, Peter & Samaras, Zissis, 2019. "From lab-to-road & vice-versa: Using a simulation-based approach for predicting real-world CO2 emissions," Energy, Elsevier, vol. 169(C), pages 1153-1165.
    2. Tsokolis, D. & Tsiakmakis, S. & Dimaratos, A. & Fontaras, G. & Pistikopoulos, P. & Ciuffo, B. & Samaras, Z., 2016. "Fuel consumption and CO2 emissions of passenger cars over the New Worldwide Harmonized Test Protocol," Applied Energy, Elsevier, vol. 179(C), pages 1152-1165.
    3. Zhang, Shaojun & Wu, Ye & Un, Puikei & Fu, Lixin & Hao, Jiming, 2016. "Modeling real-world fuel consumption and carbon dioxide emissions with high resolution for light-duty passenger vehicles in a traffic populated city," Energy, Elsevier, vol. 113(C), pages 461-471.
    4. Youssef Amry & Elhoussin Elbouchikhi & Franck Le Gall & Mounir Ghogho & Soumia El Hani, 2022. "Electric Vehicle Traction Drives and Charging Station Power Electronics: Current Status and Challenges," Energies, MDPI, vol. 15(16), pages 1-30, August.
    5. Yu, Rujie & Ren, Huanhuan & Liu, Yong & Yu, Biying, 2021. "Gap between on-road and official fuel efficiency of passenger vehicles in China," Energy Policy, Elsevier, vol. 152(C).
    6. Langbroek, Joram H.M. & Franklin, Joel P. & Susilo, Yusak O., 2017. "When do you charge your electric vehicle? A stated adaptation approach," Energy Policy, Elsevier, vol. 108(C), pages 565-573.
    7. Aderiana Mutheu Mbandi & Jan R. Böhnke & Dietrich Schwela & Harry Vallack & Mike R. Ashmore & Lisa Emberson, 2019. "Estimating On-Road Vehicle Fuel Economy in Africa: A Case Study Based on an Urban Transport Survey in Nairobi, Kenya," Energies, MDPI, vol. 12(6), pages 1-28, March.
    8. Ingrid Munné-Collado & Fabio Maria Aprà & Pol Olivella-Rosell & Roberto Villafáfila-Robles, 2019. "The Potential Role of Flexibility During Peak Hours on Greenhouse Gas Emissions: A Life Cycle Assessment of Five Targeted National Electricity Grid Mixes," Energies, MDPI, vol. 12(23), pages 1-22, November.
    9. Hooftman, Nils & Messagie, Maarten & Van Mierlo, Joeri & Coosemans, Thierry, 2018. "A review of the European passenger car regulations – Real driving emissions vs local air quality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 86(C), pages 1-21.
    10. Rupp, Matthias & Handschuh, Nils & Rieke, Christian & Kuperjans, Isabel, 2019. "Contribution of country-specific electricity mix and charging time to environmental impact of battery electric vehicles: A case study of electric buses in Germany," Applied Energy, Elsevier, vol. 237(C), pages 618-634.
    11. Simone Cornago & Yee Shee Tan & Carlo Brondi & Seeram Ramakrishna & Jonathan Sze Choong Low, 2022. "Systematic Literature Review on Dynamic Life Cycle Inventory: Towards Industry 4.0 Applications," Sustainability, MDPI, vol. 14(11), pages 1-22, May.
    12. Zhang, Xingping & Liang, Yanni & Liu, Wenfeng, 2017. "Pricing model for the charging of electric vehicles based on system dynamics in Beijing," Energy, Elsevier, vol. 119(C), pages 218-234.
    13. Anders Arvesen & Steve Völler & Christine Roxanne Hung & Volker Krey & Magnus Korpås & Anders Hammer Strømman, 2021. "Emissions of electric vehicle charging in future scenarios: The effects of time of charging," Journal of Industrial Ecology, Yale University, vol. 25(5), pages 1250-1263, October.
    14. Fan, Pengfei & Yin, Hang & Lu, Hongyu & Wu, Yizheng & Zhai, Zhiqiang & Yu, Lei & Song, Guohua, 2023. "Which factor contributes more to the fuel consumption gap between in-laboratory vs. real-world driving conditions? An independent component analysis," Energy Policy, Elsevier, vol. 182(C).
    15. Greene, David L. & Khattak, Asad J. & Liu, Jun & Wang, Xin & Hopson, Janet L. & Goeltz, Richard, 2017. "What is the evidence concerning the gap between on-road and Environmental Protection Agency fuel economy ratings?," Transport Policy, Elsevier, vol. 53(C), pages 146-160.
    16. Triantafyllopoulos, Georgios & Kontses, Anastasios & Tsokolis, Dimitrios & Ntziachristos, Leonidas & Samaras, Zissis, 2017. "Potential of energy efficiency technologies in reducing vehicle consumption under type approval and real world conditions," Energy, Elsevier, vol. 140(P1), pages 365-373.
    17. Ke, Wenwei & Zhang, Shaojun & He, Xiaoyi & Wu, Ye & Hao, Jiming, 2017. "Well-to-wheels energy consumption and emissions of electric vehicles: Mid-term implications from real-world features and air pollution control progress," Applied Energy, Elsevier, vol. 188(C), pages 367-377.
    18. Ghulam E Mustafa Abro & Saiful Azrin B. M. Zulkifli & Kundan Kumar & Najib El Ouanjli & Vijanth Sagayan Asirvadam & Mahmoud A. Mossa, 2023. "Comprehensive Review of Recent Advancements in Battery Technology, Propulsion, Power Interfaces, and Vehicle Network Systems for Intelligent Autonomous and Connected Electric Vehicles," Energies, MDPI, vol. 16(6), pages 1-31, March.
    19. Küng, Lukas & Bütler, Thomas & Georges, Gil & Boulouchos, Konstantinos, 2019. "How much energy does a car need on the road?," Applied Energy, Elsevier, vol. 256(C).
    20. Feiqi Liu & Fuquan Zhao & Zongwei Liu & Han Hao, 2018. "China’s Electric Vehicle Deployment: Energy and Greenhouse Gas Emission Impacts," Energies, MDPI, vol. 11(12), pages 1-19, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:9:y:2016:i:2:p:84-:d:63112. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.