IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v214y2021ics0360544220321563.html
   My bibliography  Save this article

Fuel efficiency and exhaust characteristics of turbocharged diesel engine equipped with an electric supercharger

Author

Listed:
  • Baek, Seungju
  • Lee, Hyeonjik
  • Lee, Kihyung

Abstract

The electric supercharger, which is an important device of the 48 V hybrid system, is known to increase the low-speed efficiency and torque of the internal combustion engine. However, there is a lack of research on exhaust emissions, which are becoming more stringent owing to the use of the electric supercharger. Therefore, this study conducted basic experiments and analysis on the power, fuel efficiency, and exhaust emissions according to the change of engine control parameters during operation of the electric supercharger. The maximum indicated mean effective pressure (IMEP) increase was 52.9% at 1250 rpm. However, friction mean effective pressure (FMEP) and pumping mean effective pressure (PMEP), associated with a loss of engine efficiency, increased under various operating conditions. Brake specific fuel consumption (BSFC) improved by up to 8.8%, and brake specific carbon dioxide (BSCO2) decreased accordingly. Brake specific particulate matter (BSPM) and brake specific oxides of nitrogen (BSNOx) fluctuated significantly with the adjustment of the parameters for engine control. These were partially reduced compared to the conventional engines according to the experimental conditions. Therefore, even if an electric supercharger is applied to a diesel vehicle equipped with exhaust reduction devices, emission regulations can be satisfied.

Suggested Citation

  • Baek, Seungju & Lee, Hyeonjik & Lee, Kihyung, 2021. "Fuel efficiency and exhaust characteristics of turbocharged diesel engine equipped with an electric supercharger," Energy, Elsevier, vol. 214(C).
  • Handle: RePEc:eee:energy:v:214:y:2021:i:c:s0360544220321563
    DOI: 10.1016/j.energy.2020.119049
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220321563
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.119049?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Baek, Seungju & Woo, Seungchul & Kim, Youngkun & Lee, Kihyung, 2019. "Prediction of turbocharged diesel engine performance equipped with an electric supercharger using 1D simulation," Energy, Elsevier, vol. 185(C), pages 213-228.
    2. Lei, Y. & Zhou, D.S. & Zhang, H.G., 2010. "Investigation on performance of a compression-ignition engine with pressure-wave supercharger," Energy, Elsevier, vol. 35(1), pages 85-93.
    3. Pavlovic, J. & Ciuffo, B. & Fontaras, G. & Valverde, V. & Marotta, A., 2018. "How much difference in type-approval CO2 emissions from passenger cars in Europe can be expected from changing to the new test procedure (NEDC vs. WLTP)?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 111(C), pages 136-147.
    4. Zamboni, Giorgio & Moggia, Simone & Capobianco, Massimo, 2016. "Hybrid EGR and turbocharging systems control for low NOX and fuel consumption in an automotive diesel engine," Applied Energy, Elsevier, vol. 165(C), pages 839-848.
    5. Nazoktabar, Mohsen & Jazayeri, Seyed Ali & Parsa, Mohsen & Ganji, Davoud Domiri & Arshtabar, Kamran, 2019. "Controlling the optimal combustion phasing in an HCCI engine based on load demand and minimum emissions," Energy, Elsevier, vol. 182(C), pages 82-92.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ma, Zetai & Xie, Wenping & Xiang, Hanchun & Zhang, Kun & Yang, Mingyang & Deng, Kangyao, 2023. "Thermodynamic analysis of power recovery of marine diesel engine under high exhaust backpressure by additional electrically driven compressor," Energy, Elsevier, vol. 266(C).
    2. Baek, Seungju & Lee, Sanguk & Shin, Myunghwan & Lee, Jongtae & Lee, Kihyung, 2022. "Analysis of combustion and exhaust characteristics according to changes in the propane content of LPG," Energy, Elsevier, vol. 239(PC).
    3. Shen, Kai & Xu, Zishun & Zhu, Zhongpan & Yang, Linsen, 2022. "Combined effects of electric supercharger and LP-EGR on performance of turbocharged engine," Energy, Elsevier, vol. 244(PB).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Baek, Seungju & Woo, Seungchul & Kim, Youngkun & Lee, Kihyung, 2019. "Prediction of turbocharged diesel engine performance equipped with an electric supercharger using 1D simulation," Energy, Elsevier, vol. 185(C), pages 213-228.
    2. Zhao, Yiming & Hu, Dapeng & Yu, Yang & Li, Haoran, 2023. "Study on gas wave ejector with a novel wave rotor applied in natural gas extraction," Energy, Elsevier, vol. 277(C).
    3. Xinglong Liu & Fuquan Zhao & Han Hao & Kangda Chen & Zongwei Liu & Hassan Babiker & Amer Ahmad Amer, 2020. "From NEDC to WLTP: Effect on the Energy Consumption, NEV Credits, and Subsidies Policies of PHEV in the Chinese Market," Sustainability, MDPI, vol. 12(14), pages 1-19, July.
    4. Jarosław Ziółkowski & Mateusz Oszczypała & Jerzy Małachowski & Joanna Szkutnik-Rogoż, 2021. "Use of Artificial Neural Networks to Predict Fuel Consumption on the Basis of Technical Parameters of Vehicles," Energies, MDPI, vol. 14(9), pages 1-23, May.
    5. Reihani, Amin & Hoard, John & Klinkert, Stefan & Kuan, Chih-Kuang & Styles, Daniel & McConville, Greg, 2020. "Experimental response surface study of the effects of low-pressure exhaust gas recirculation mixing on turbocharger compressor performance," Applied Energy, Elsevier, vol. 261(C).
    6. Barouch Giechaskiel & Dimitrios Komnos & Georgios Fontaras, 2021. "Impacts of Extreme Ambient Temperatures and Road Gradient on Energy Consumption and CO 2 Emissions of a Euro 6d-Temp Gasoline Vehicle," Energies, MDPI, vol. 14(19), pages 1-20, September.
    7. Ma, Zetai & Xie, Wenping & Xiang, Hanchun & Zhang, Kun & Yang, Mingyang & Deng, Kangyao, 2023. "Thermodynamic analysis of power recovery of marine diesel engine under high exhaust backpressure by additional electrically driven compressor," Energy, Elsevier, vol. 266(C).
    8. Zhu, Dengting & Zheng, Xinqian, 2019. "Fuel consumption and emission characteristics in asymmetric twin-scroll turbocharged diesel engine with two exhaust gas recirculation circuits," Applied Energy, Elsevier, vol. 238(C), pages 985-995.
    9. Kangda Chen & Fuquan Zhao & Xinglong Liu & Han Hao & Zongwei Liu, 2021. "Impacts of the New Worldwide Light-Duty Test Procedure on Technology Effectiveness and China’s Passenger Vehicle Fuel Consumption Regulations," IJERPH, MDPI, vol. 18(6), pages 1-20, March.
    10. Tüchler, Stefan & Copeland, Colin D., 2020. "Experimental and numerical assessment of an optimised, non-axial wave rotor turbine," Applied Energy, Elsevier, vol. 268(C).
    11. José I. Huertas & Michael Giraldo & Luis F. Quirama & Jenny Díaz, 2018. "Driving Cycles Based on Fuel Consumption," Energies, MDPI, vol. 11(11), pages 1-13, November.
    12. Song, Jingeun & Cha, Junepyo, 2022. "Development of prediction methodology for CO2 emissions and fuel economy of light duty vehicle," Energy, Elsevier, vol. 244(PB).
    13. Lu, Kai & Bai, Shuzhan & Zang, Zhicheng & Li, Guoxiang, 2023. "Study on urea deposits risk of after-treatment system based on deposits boundary method," Energy, Elsevier, vol. 267(C).
    14. Cosmin Constantin Suciu & Sorin Vlad Igret & Ion Vetres & Ioana Ionel, 2024. "Review of the Integration of Hybrid Electric Turbochargers for Mass-Produced Road Vehicles," Energies, MDPI, vol. 17(6), pages 1-22, March.
    15. Deng, Yuanwang & Liu, Huawei & Zhao, Xiaohuan & E, Jiaqiang & Chen, Jianmei, 2018. "Effects of cold start control strategy on cold start performance of the diesel engine based on a comprehensive preheat diesel engine model," Applied Energy, Elsevier, vol. 210(C), pages 279-287.
    16. Stefan Tabacu & Dragos Popa, 2023. "Backward-Facing Analysis for the Preliminary Estimation of the Vehicle Fuel Consumption," Sustainability, MDPI, vol. 15(6), pages 1-19, March.
    17. Buberger, Johannes & Kersten, Anton & Kuder, Manuel & Eckerle, Richard & Weyh, Thomas & Thiringer, Torbjörn, 2022. "Total CO2-equivalent life-cycle emissions from commercially available passenger cars," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    18. Salvo, Orlando de & Vaz de Almeida, Flávio G., 2019. "Influence of technologies on energy efficiency results of official Brazilian tests of vehicle energy consumption," Applied Energy, Elsevier, vol. 241(C), pages 98-112.
    19. Kale, Aneesh Vijay & Krishnasamy, Anand, 2023. "Numerical investigation on selecting appropriate piston bowl geometry and compression ratio for gasoline-fuelled homogeneous charge compression ignited light-duty diesel engine," Energy, Elsevier, vol. 282(C).
    20. Tae-Woo Lee & Do-Kwan Hong, 2021. "Electrical and Mechanical Characteristics of a High-Speed Motor for Electric Turbochargers in Relation to Eccentricity," Energies, MDPI, vol. 14(11), pages 1-14, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:214:y:2021:i:c:s0360544220321563. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.