IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v103y2017icp212-222.html
   My bibliography  Save this article

From laboratory to road: Modeling the divergence between official and real-world fuel consumption and CO2 emission values in the German passenger car market for the years 2001–2014

Author

Listed:
  • Tietge, Uwe
  • Mock, Peter
  • Franco, Vicente
  • Zacharof, Nikiforos

Abstract

Official fuel consumption and carbon dioxide (CO2) emission values of European passenger cars are widely recognized to be unrepresentative of real-world driving. The divergence between official and real-world values undermines national vehicle taxation schemes and EU-wide CO2 standards for passenger cars, particularly since the divergence increases with new model generations. This study examines real-world fuel consumption data from more than 130,000 vehicles to investigate the development of the divergence. The analysis validates and refines a regression model developed by Ntziachristos et al. (2014), which estimates real-world fuel consumption of cars based on readily available vehicle characteristics, namely official fuel consumption values, vehicle mass, and engine capacity. The regression model yielded coefficients of determination of 0.87 or higher, but was found to underestimate fuel consumption of newer vehicles and company cars. This study proposes to add vehicle build year as a regressor to account for the increasing divergence between official and real-world fuel consumption figures.

Suggested Citation

  • Tietge, Uwe & Mock, Peter & Franco, Vicente & Zacharof, Nikiforos, 2017. "From laboratory to road: Modeling the divergence between official and real-world fuel consumption and CO2 emission values in the German passenger car market for the years 2001–2014," Energy Policy, Elsevier, vol. 103(C), pages 212-222.
  • Handle: RePEc:eee:enepol:v:103:y:2017:i:c:p:212-222
    DOI: 10.1016/j.enpol.2017.01.021
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421517300320
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2017.01.021?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ntziachristos, L. & Mellios, G. & Tsokolis, D. & Keller, M. & Hausberger, S. & Ligterink, N.E. & Dilara, P., 2014. "In-use vs. type-approval fuel consumption of current passenger cars in Europe," Energy Policy, Elsevier, vol. 67(C), pages 403-411.
    2. Zeileis, Achim, 2004. "Econometric Computing with HC and HAC Covariance Matrix Estimators," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 11(i10).
    3. Pavlovic, Jelica & Marotta, Alessandro & Ciuffo, Biagio, 2016. "CO2 emissions and energy demands of vehicles tested under the NEDC and the new WLTP type approval test procedures," Applied Energy, Elsevier, vol. 177(C), pages 661-670.
    4. Tsokolis, D. & Tsiakmakis, S. & Dimaratos, A. & Fontaras, G. & Pistikopoulos, P. & Ciuffo, B. & Samaras, Z., 2016. "Fuel consumption and CO2 emissions of passenger cars over the New Worldwide Harmonized Test Protocol," Applied Energy, Elsevier, vol. 179(C), pages 1152-1165.
    5. Diekmann, Laura-Christin & Gerhards, Eva & Klinski, Stefan & Meyer, Bettina & Schmidt, Sebastian & Thöne, Michael, 2011. "Steuerliche Behandlung von Firmenwagen in Deutschland [Company car taxation in Germany]," FiFo Reports - FiFo-Berichte 13, University of Cologne, FiFo Institute for Public Economics.
    6. Zacharof, Nikiforos & Tietge, Uwe & Franco, Vicente & Mock, Peter, 2016. "Type approval and real-world CO2 and NOx emissions from EU light commercial vehicles," Energy Policy, Elsevier, vol. 97(C), pages 540-548.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. João Andrade de Carvalho & André de Castro & Gutemberg Hespanha Brasil & Paulo Antonio de Souza & Andrés Z. Mendiburu, 2022. "CO 2 Emission Factors and Carbon Losses for Off-Road Mining Trucks," Energies, MDPI, vol. 15(7), pages 1-17, April.
    2. Aderiana Mutheu Mbandi & Jan R. Böhnke & Dietrich Schwela & Harry Vallack & Mike R. Ashmore & Lisa Emberson, 2019. "Estimating On-Road Vehicle Fuel Economy in Africa: A Case Study Based on an Urban Transport Survey in Nairobi, Kenya," Energies, MDPI, vol. 12(6), pages 1-28, March.
    3. Yushan Yang & Nuoya Gong & Keying Xie & Qingfei Liu, 2022. "Predicting Gasoline Vehicle Fuel Consumption in Energy and Environmental Impact Based on Machine Learning and Multidimensional Big Data," Energies, MDPI, vol. 15(5), pages 1-17, February.
    4. Li, Chao & Yi, Yongxi & Zhang, Aoxiang & Chen, Biao, 2023. "Fuel consumption-reduction investment decisions and coordination contracts in fuel vehicle supply chains: A dynamic analysis," Energy Economics, Elsevier, vol. 125(C).
    5. José Ignacio Huertas & Luis Felipe Quirama & Michael Giraldo & Jenny Díaz, 2019. "Comparison of Three Methods for Constructing Real Driving Cycles," Energies, MDPI, vol. 12(4), pages 1-15, February.
    6. Stefan Englberger & Holger Hesse & Daniel Kucevic & Andreas Jossen, 2019. "A Techno-Economic Analysis of Vehicle-to-Building: Battery Degradation and Efficiency Analysis in the Context of Coordinated Electric Vehicle Charging," Energies, MDPI, vol. 12(5), pages 1-17, March.
    7. José I. Huertas & Michael Giraldo & Luis F. Quirama & Jenny Díaz, 2018. "Driving Cycles Based on Fuel Consumption," Energies, MDPI, vol. 11(11), pages 1-13, November.
    8. Küng, Lukas & Bütler, Thomas & Georges, Gil & Boulouchos, Konstantinos, 2019. "How much energy does a car need on the road?," Applied Energy, Elsevier, vol. 256(C).
    9. Logan, Kathryn G. & Nelson, John D. & Brand, Christian & Hastings, Astley, 2021. "Phasing in electric vehicles: Does policy focusing on operating emission achieve net zero emissions reduction objectives?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 152(C), pages 100-114.
    10. Triantafyllopoulos, Georgios & Kontses, Anastasios & Tsokolis, Dimitrios & Ntziachristos, Leonidas & Samaras, Zissis, 2017. "Potential of energy efficiency technologies in reducing vehicle consumption under type approval and real world conditions," Energy, Elsevier, vol. 140(P1), pages 365-373.
    11. Craglia, Matteo & Cullen, Jonathan, 2019. "Do technical improvements lead to real efficiency gains? Disaggregating changes in transport energy intensity," Energy Policy, Elsevier, vol. 134(C).
    12. Jens F. Peters & Mercedes Burguillo & Jose M. Arranz, 2021. "Low emission zones: Effects on alternative-fuel vehicle uptake and fleet CO2 emissions," Papers 2103.13801, arXiv.org, revised May 2021.
    13. Alberini, Anna & Horvath, Marco & Vance, Colin, 2022. "Drive less, drive better, or both? Behavioral adjustments to fuel price changes in Germany," Resource and Energy Economics, Elsevier, vol. 68(C).
    14. Tsiakmakis, Stefanos & Fontaras, Georgios & Dornoff, Jan & Valverde, Victor & Komnos, Dimitrios & Ciuffo, Biagio & Mock, Peter & Samaras, Zissis, 2019. "From lab-to-road & vice-versa: Using a simulation-based approach for predicting real-world CO2 emissions," Energy, Elsevier, vol. 169(C), pages 1153-1165.
    15. Tsemekidi Tzeiranaki, Sofia & Economidou, Marina & Bertoldi, Paolo & Thiel, Christian & Fontaras, Georgios & Clementi, Enrico Luca & Franco De Los Rios, Camilo, 2023. "“The impact of energy efficiency and decarbonisation policies on the European road transport sector”," Transportation Research Part A: Policy and Practice, Elsevier, vol. 170(C).
    16. Alberini, Anna & Horvath, Marco & Vance, Colin, 2021. "Drive less, drive better, or both? Behavioral adjustments to fuel price changes in Germany," Ruhr Economic Papers 892, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
    17. Alberini, Anna & Horvath, Marco, 2021. "All car taxes are not created equal: Evidence from Germany," Energy Economics, Elsevier, vol. 100(C).
    18. Hediger, Cécile, 2023. "The more kilometers, the merrier? The rebound effect and its welfare implications in private mobility," Energy Policy, Elsevier, vol. 180(C).
    19. Luin, Blaž & Petelin, Stojan & Al-Mansour, Fouad, 2019. "Microsimulation of electric vehicle energy consumption," Energy, Elsevier, vol. 174(C), pages 24-32.
    20. Mogno, Caterina & Fontaras, Georgios & Arcidiacono, Vincenzo & Komnos, Dimitrios & Pavlovic, Jelica & Ciuffo, Biagio & Makridis, Michail & Valverde, Victor, 2022. "The application of the CO2MPAS model for vehicle CO2 emissions estimation over real traffic conditions," Transport Policy, Elsevier, vol. 124(C), pages 152-159.
    21. Bishop, Justin D.K. & Molden, N. & Boies, Adam M, 2019. "Using portable emissions measurement systems (PEMS) to derive more accurate estimates of fuel use and nitrogen oxides emissions from modern Euro 6 passenger cars under real-world driving conditions," Applied Energy, Elsevier, vol. 242(C), pages 942-973.
    22. Yu, Rujie & Ren, Huanhuan & Liu, Yong & Yu, Biying, 2021. "Gap between on-road and official fuel efficiency of passenger vehicles in China," Energy Policy, Elsevier, vol. 152(C).
    23. Fan, Pengfei & Yin, Hang & Lu, Hongyu & Wu, Yizheng & Zhai, Zhiqiang & Yu, Lei & Song, Guohua, 2023. "Which factor contributes more to the fuel consumption gap between in-laboratory vs. real-world driving conditions? An independent component analysis," Energy Policy, Elsevier, vol. 182(C).
    24. de Salvo Junior, Orlando & Saraiva de Souza, Maria Tereza & Vaz de Almeida, Flávio G., 2021. "Implementation of new technologies for reducing fuel consumption of automobiles in Brazil according to the Brazilian Vehicle Labelling Programme," Energy, Elsevier, vol. 233(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Triantafyllopoulos, Georgios & Kontses, Anastasios & Tsokolis, Dimitrios & Ntziachristos, Leonidas & Samaras, Zissis, 2017. "Potential of energy efficiency technologies in reducing vehicle consumption under type approval and real world conditions," Energy, Elsevier, vol. 140(P1), pages 365-373.
    2. Tsiakmakis, Stefanos & Fontaras, Georgios & Ciuffo, Biagio & Samaras, Zissis, 2017. "A simulation-based methodology for quantifying European passenger car fleet CO2 emissions," Applied Energy, Elsevier, vol. 199(C), pages 447-465.
    3. Pirjola, Liisa & Kuuluvainen, Heino & Timonen, Hilkka & Saarikoski, Sanna & Teinilä, Kimmo & Salo, Laura & Datta, Arindam & Simonen, Pauli & Karjalainen, Panu & Kulmala, Kari & Rönkkö, Topi, 2019. "Potential of renewable fuel to reduce diesel exhaust particle emissions," Applied Energy, Elsevier, vol. 254(C).
    4. Evangelos G. Giakoumis & Alexandros T. Zachiotis, 2017. "Investigation of a Diesel-Engined Vehicle’s Performance and Emissions during the WLTC Driving Cycle—Comparison with the NEDC," Energies, MDPI, vol. 10(2), pages 1-19, February.
    5. Tsiakmakis, Stefanos & Fontaras, Georgios & Dornoff, Jan & Valverde, Victor & Komnos, Dimitrios & Ciuffo, Biagio & Mock, Peter & Samaras, Zissis, 2019. "From lab-to-road & vice-versa: Using a simulation-based approach for predicting real-world CO2 emissions," Energy, Elsevier, vol. 169(C), pages 1153-1165.
    6. Fan, Pengfei & Yin, Hang & Lu, Hongyu & Wu, Yizheng & Zhai, Zhiqiang & Yu, Lei & Song, Guohua, 2023. "Which factor contributes more to the fuel consumption gap between in-laboratory vs. real-world driving conditions? An independent component analysis," Energy Policy, Elsevier, vol. 182(C).
    7. Tsokolis, D. & Tsiakmakis, S. & Dimaratos, A. & Fontaras, G. & Pistikopoulos, P. & Ciuffo, B. & Samaras, Z., 2016. "Fuel consumption and CO2 emissions of passenger cars over the New Worldwide Harmonized Test Protocol," Applied Energy, Elsevier, vol. 179(C), pages 1152-1165.
    8. He, Liqiang & Hu, Jingnan & Zhang, Shaojun & Wu, Ye & Zhu, Rencheng & Zu, Lei & Bao, Xiaofeng & Lai, Yitu & Su, Sheng, 2018. "The impact from the direct injection and multi-port fuel injection technologies for gasoline vehicles on solid particle number and black carbon emissions," Applied Energy, Elsevier, vol. 226(C), pages 819-826.
    9. S. M. Ashrafur Rahman & I. M. Rizwanul Fattah & Hwai Chyuan Ong & Fajle Rabbi Ashik & Mohammad Mahmudul Hassan & Md Tausif Murshed & Md Ashraful Imran & Md Hamidur Rahman & Md Akibur Rahman & Mohammad, 2021. "State-of-the-Art of Establishing Test Procedures for Real Driving Gaseous Emissions from Light- and Heavy-Duty Vehicles," Energies, MDPI, vol. 14(14), pages 1-32, July.
    10. Pavlovic, J. & Ciuffo, B. & Fontaras, G. & Valverde, V. & Marotta, A., 2018. "How much difference in type-approval CO2 emissions from passenger cars in Europe can be expected from changing to the new test procedure (NEDC vs. WLTP)?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 111(C), pages 136-147.
    11. Küng, Lukas & Bütler, Thomas & Georges, Gil & Boulouchos, Konstantinos, 2019. "How much energy does a car need on the road?," Applied Energy, Elsevier, vol. 256(C).
    12. Sousa, Nuno & Almeida, Arminda & Coutinho-Rodrigues, João, 2020. "A multicriteria methodology for estimating consumer acceptance of alternative powertrain technologies," Transport Policy, Elsevier, vol. 85(C), pages 18-32.
    13. Karol Tucki & Remigiusz Mruk & Olga Orynycz & Katarzyna Botwińska & Arkadiusz Gola & Anna Bączyk, 2019. "Toxicity of Exhaust Fumes (CO, NO x ) of the Compression-Ignition (Diesel) Engine with the Use of Simulation," Sustainability, MDPI, vol. 11(8), pages 1-15, April.
    14. Gkillas, Konstantinos & Gupta, Rangan & Pierdzioch, Christian, 2020. "Forecasting realized oil-price volatility: The role of financial stress and asymmetric loss," Journal of International Money and Finance, Elsevier, vol. 104(C).
    15. Niels Lundtorp Olsen & Alessia Pini & Simone Vantini, 2021. "False discovery rate for functional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(3), pages 784-809, September.
    16. Zhang, Shaojun & Wu, Ye & Un, Puikei & Fu, Lixin & Hao, Jiming, 2016. "Modeling real-world fuel consumption and carbon dioxide emissions with high resolution for light-duty passenger vehicles in a traffic populated city," Energy, Elsevier, vol. 113(C), pages 461-471.
    17. Miller, Reid & Golab, Lukasz & Rosenberg, Catherine, 2017. "Modelling weather effects for impact analysis of residential time-of-use electricity pricing," Energy Policy, Elsevier, vol. 105(C), pages 534-546.
    18. Ball, Laurence & Carvalho, Carlos & Evans, Christopher & Antonio Ricci, Luca, 2024. "Weighted Median Inflation Around the World: A Measure of Core Inflation," Journal of International Money and Finance, Elsevier, vol. 142(C).
    19. Stefan Seifert & Christoph Kahle & Silke Hüttel, 2021. "Price Dispersion in Farmland Markets: What Is the Role of Asymmetric Information?," American Journal of Agricultural Economics, John Wiley & Sons, vol. 103(4), pages 1545-1568, August.
    20. Felix Thoemmes & Wang Liao & Ze Jin, 2017. "The Analysis of the Regression-Discontinuity Design in R," Journal of Educational and Behavioral Statistics, , vol. 42(3), pages 341-360, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:103:y:2017:i:c:p:212-222. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.