IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v165y2016icp234-243.html
   My bibliography  Save this article

Integrating building and transportation energy use to design a comprehensive greenhouse gas mitigation strategy

Author

Listed:
  • Karan, Ebrahim
  • Mohammadpour, Atefeh
  • Asadi, Somayeh

Abstract

Building and transportation sectors account for approximately 75% of CO2 emissions. A mitigation strategy that combines both renewable energy sources and adoption of all-electric vehicles (EVs) instead of conventional gasoline powered vehicles thus seems most promising. The desired outcome of this strategy cannot be achieved without taking into consideration human activities in building and transportation. This study compares the energy use in building and transportation, aiming to provide a proper approach for evaluating the effectiveness and possible CO2 emissions reductions of GHG mitigation strategies. The analysis of the collected data showed that on average each individual produced around 20lbs of CO2 per day, 62% of the total CO2 was emitted in transportation. The mitigation strategy including EVs powered by electricity generated from coal-fired power plants resulted in average CO2 emissions reductions of 3.7%. The mitigation strategy using the EVs powered by solar energy obtained from grid-tied solar panels have led to 12.2% CO2 emissions reductions per day (from 12.38lbs/day to 10.87lbs/day), and the strategy incorporating EVs with the off-grid source of power was the most successful strategy and resulted in an average CO2 emissions savings of 12.38lbs/day. This study also estimates the initial cost per pound of CO2 emissions reduction per day for each of the mitigation strategies.

Suggested Citation

  • Karan, Ebrahim & Mohammadpour, Atefeh & Asadi, Somayeh, 2016. "Integrating building and transportation energy use to design a comprehensive greenhouse gas mitigation strategy," Applied Energy, Elsevier, vol. 165(C), pages 234-243.
  • Handle: RePEc:eee:appene:v:165:y:2016:i:c:p:234-243
    DOI: 10.1016/j.apenergy.2015.11.035
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261915014853
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2015.11.035?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lund, Henrik, 2007. "Renewable energy strategies for sustainable development," Energy, Elsevier, vol. 32(6), pages 912-919.
    2. Ashina, Shuichi & Nakata, Toshihiko, 2008. "Energy-efficiency strategy for CO2 emissions in a residential sector in Japan," Applied Energy, Elsevier, vol. 85(2-3), pages 101-114, February.
    3. Achour, H. & Carton, J.G. & Olabi, A.G., 2011. "Estimating vehicle emissions from road transport, case study: Dublin City," Applied Energy, Elsevier, vol. 88(5), pages 1957-1964, May.
    4. Millo, Federico & Rolando, Luciano & Fuso, Rocco & Mallamo, Fabio, 2014. "Real CO2 emissions benefits and end user’s operating costs of a plug-in Hybrid Electric Vehicle," Applied Energy, Elsevier, vol. 114(C), pages 563-571.
    5. Ashina, Shuichi & Nakata, Toshihiko, 2008. "Quantitative analysis of energy-efficiency strategy on CO2 emissions in the residential sector in Japan - Case study of Iwate prefecture," Applied Energy, Elsevier, vol. 85(4), pages 204-217, April.
    6. Wager, Guido & McHenry, Mark P. & Whale, Jonathan & Bräunl, Thomas, 2014. "Testing energy efficiency and driving range of electric vehicles in relation to gear selection," Renewable Energy, Elsevier, vol. 62(C), pages 303-312.
    7. Tang, Bao-jun & Wu, Xiao-feng & Zhang, Xian, 2013. "Modeling the CO2 emissions and energy saved from new energy vehicles based on the logistic-curve," Energy Policy, Elsevier, vol. 57(C), pages 30-35.
    8. Doucette, Reed T. & McCulloch, Malcolm D., 2011. "Modeling the prospects of plug-in hybrid electric vehicles to reduce CO2 emissions," Applied Energy, Elsevier, vol. 88(7), pages 2315-2323, July.
    9. Nunes, Pedro & Farias, Tiago & Brito, Miguel C., 2015. "Enabling solar electricity with electric vehicles smart charging," Energy, Elsevier, vol. 87(C), pages 10-20.
    10. González Palencia, Juan C. & Furubayashi, Takaaki & Nakata, Toshihiko, 2012. "Energy use and CO2 emissions reduction potential in passenger car fleet using zero emission vehicles and lightweight materials," Energy, Elsevier, vol. 48(1), pages 548-565.
    11. Colmenar-Santos, Antonio & Rosales-Asensio, Enrique & Borge-Diez, David & Collado-Fernández, Eduardo, 2016. "Evaluation of the cost of using power plant reject heat in low-temperature district heating and cooling networks," Applied Energy, Elsevier, vol. 162(C), pages 892-907.
    12. Rangaraju, Surendraprabu & De Vroey, Laurent & Messagie, Maarten & Mertens, Jan & Van Mierlo, Joeri, 2015. "Impacts of electricity mix, charging profile, and driving behavior on the emissions performance of battery electric vehicles: A Belgian case study," Applied Energy, Elsevier, vol. 148(C), pages 496-505.
    13. Varga, Bogdan Ovidiu, 2013. "Electric vehicles, primary energy sources and CO2 emissions: Romanian case study," Energy, Elsevier, vol. 49(C), pages 61-70.
    14. Md. Abdus Salam & Toshikuni Noguchi, 2005. "Impact of Human Activities on Carbon Dioxide (CO2) Emissions: A Statistical Analysis," Environment Systems and Decisions, Springer, vol. 25(1), pages 19-30, March.
    15. Onat, Nuri Cihat & Kucukvar, Murat & Tatari, Omer, 2015. "Conventional, hybrid, plug-in hybrid or electric vehicles? State-based comparative carbon and energy footprint analysis in the United States," Applied Energy, Elsevier, vol. 150(C), pages 36-49.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. João Monteiro & Nuno Sousa & João Coutinho-Rodrigues & Eduardo Natividade-Jesus, 2024. "Challenges Ahead for Sustainable Cities: An Urban Form and Transport System Review," Energies, MDPI, vol. 17(2), pages 1-26, January.
    2. Burek, Jasmina & Nutter, Darin W., 2019. "A life cycle assessment-based multi-objective optimization of the purchased, solar, and wind energy for the grocery, perishables, and general merchandise multi-facility distribution center network," Applied Energy, Elsevier, vol. 235(C), pages 1427-1446.
    3. Osvaldo Rodriguez-Hernandez & Manuel Martinez & Carlos Lopez-Villalobos & Hector Garcia & Rafael Campos-Amezcua, 2019. "Techno-Economic Feasibility Study of Small Wind Turbines in the Valley of Mexico Metropolitan Area," Energies, MDPI, vol. 12(5), pages 1-26, March.
    4. Hung, Duong Quoc & Dong, Zhao Yang & Trinh, Hieu, 2016. "Determining the size of PHEV charging stations powered by commercial grid-integrated PV systems considering reactive power support," Applied Energy, Elsevier, vol. 183(C), pages 160-169.
    5. Kim, Yang-Seon & Heidarinejad, Mohammad & Dahlhausen, Matthew & Srebric, Jelena, 2017. "Building energy model calibration with schedules derived from electricity use data," Applied Energy, Elsevier, vol. 190(C), pages 997-1007.
    6. Karan, Ebrahim & Asadi, Somayeh & Ntaimo, Lewis, 2016. "A stochastic optimization approach to reduce greenhouse gas emissions from buildings and transportation," Energy, Elsevier, vol. 106(C), pages 367-377.
    7. Xiaolin Chu & Yuntian Ge & Xue Zhou & Lin Li & Dong Yang, 2020. "Modeling and Analysis of Electric Vehicle-Power Grid-Manufacturing Facility (EPM) Energy Sharing System under Time-of-Use Electricity Tariff," Sustainability, MDPI, vol. 12(12), pages 1-27, June.
    8. Helindu Cumaratunga & Masaki Imanaka & Muneaki Kurimoto & Shigeyuki Sugimoto & Takeyoshi Kato, 2021. "Proposal of Priority Schemes for Controlling Electric Vehicle Charging and Discharging in a Workplace Power System with High Penetration of Photovoltaic Systems," Energies, MDPI, vol. 14(22), pages 1-23, November.
    9. Fang, Guochang & Tian, Lixin & Fu, Min & Sun, Mei & Du, Ruijin & Liu, Menghe, 2017. "Investigating carbon tax pilot in YRD urban agglomerations—Analysis of a novel ESER system with carbon tax constraints and its application," Applied Energy, Elsevier, vol. 194(C), pages 635-647.
    10. Kuang, Yanqing & Chen, Yang & Hu, Mengqi & Yang, Dong, 2017. "Influence analysis of driver behavior and building category on economic performance of electric vehicle to grid and building integration," Applied Energy, Elsevier, vol. 207(C), pages 427-437.
    11. Gallo, Michela & Del Borghi, Adriana & Strazza, Carlo & Parodi, Lara & Arcioni, Livia & Proietti, Stefania, 2016. "Opportunities and criticisms of voluntary emission reduction projects developed by Public Administrations: Analysis of 143 case studies implemented in Italy," Applied Energy, Elsevier, vol. 179(C), pages 1269-1282.
    12. Quddus, Md Abdul & Shahvari, Omid & Marufuzzaman, Mohammad & Usher, John M. & Jaradat, Raed, 2018. "A collaborative energy sharing optimization model among electric vehicle charging stations, commercial buildings, and power grid," Applied Energy, Elsevier, vol. 229(C), pages 841-857.
    13. Zhou, Yuekuan & Cao, Sunliang & Hensen, Jan L.M. & Lund, Peter D., 2019. "Energy integration and interaction between buildings and vehicles: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kain Glensor & María Rosa Muñoz B., 2019. "Life-Cycle Assessment of Brazilian Transport Biofuel and Electrification Pathways," Sustainability, MDPI, vol. 11(22), pages 1-31, November.
    2. Anselma, Pier Giuseppe & Biswas, Atriya & Belingardi, Giovanni & Emadi, Ali, 2020. "Rapid assessment of the fuel economy capability of parallel and series-parallel hybrid electric vehicles," Applied Energy, Elsevier, vol. 275(C).
    3. Kim, Imjung & Kim, Junghun & Lee, Jongsu, 2020. "Dynamic analysis of well-to-wheel electric and hydrogen vehicles greenhouse gas emissions: Focusing on consumer preferences and power mix changes in South Korea," Applied Energy, Elsevier, vol. 260(C).
    4. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    5. Cordiner, Stefano & Galeotti, Matteo & Mulone, Vincenzo & Nobile, Matteo & Rocco, Vittorio, 2016. "Trip-based SOC management for a plugin hybrid electric vehicle," Applied Energy, Elsevier, vol. 164(C), pages 891-905.
    6. Raslavičius, Laurencas & Azzopardi, Brian & Keršys, Artūras & Starevičius, Martynas & Bazaras, Žilvinas & Makaras, Rolandas, 2015. "Electric vehicles challenges and opportunities: Lithuanian review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 786-800.
    7. Brady, John & O’Mahony, Margaret, 2016. "Development of a driving cycle to evaluate the energy economy of electric vehicles in urban areas," Applied Energy, Elsevier, vol. 177(C), pages 165-178.
    8. Ma, Mina & Wang, Yu & Duan, Qiangling & Wu, Tangqin & Sun, Jinhua & Wang, Qingsong, 2018. "Fault detection of the connection of lithium-ion power batteries in series for electric vehicles based on statistical analysis," Energy, Elsevier, vol. 164(C), pages 745-756.
    9. Ribau, João P. & Sousa, João M.C. & Silva, Carla M., 2015. "Reducing the carbon footprint of urban bus fleets using multi-objective optimization," Energy, Elsevier, vol. 93(P1), pages 1089-1104.
    10. Choi, Hyunhong & Shin, Jungwoo & Woo, JongRoul, 2018. "Effect of electricity generation mix on battery electric vehicle adoption and its environmental impact," Energy Policy, Elsevier, vol. 121(C), pages 13-24.
    11. Jian, Linni & Zheng, Yanchong & Xiao, Xinping & Chan, C.C., 2015. "Optimal scheduling for vehicle-to-grid operation with stochastic connection of plug-in electric vehicles to smart grid," Applied Energy, Elsevier, vol. 146(C), pages 150-161.
    12. Fan, Jing-Li & Liao, Hua & Liang, Qiao-Mei & Tatano, Hirokazu & Liu, Chun-Feng & Wei, Yi-Ming, 2013. "Residential carbon emission evolutions in urban–rural divided China: An end-use and behavior analysis," Applied Energy, Elsevier, vol. 101(C), pages 323-332.
    13. Yun, Geun Young & Steemers, Koen, 2011. "Behavioural, physical and socio-economic factors in household cooling energy consumption," Applied Energy, Elsevier, vol. 88(6), pages 2191-2200, June.
    14. Yuan, Xueliang & Liu, Xin & Zuo, Jian, 2015. "The development of new energy vehicles for a sustainable future: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 298-305.
    15. Raslavičius, Laurencas & Starevičius, Martynas & Keršys, Artūras & Pilkauskas, Kęstutis & Vilkauskas, Andrius, 2013. "Performance of an all-electric vehicle under UN ECE R101 test conditions: A feasibility study for the city of Kaunas, Lithuania," Energy, Elsevier, vol. 55(C), pages 436-448.
    16. Min, Jihoon & Azevedo, Inês Lima & Hakkarainen, Pekka, 2015. "Assessing regional differences in lighting heat replacement effects in residential buildings across the United States," Applied Energy, Elsevier, vol. 141(C), pages 12-18.
    17. Guo, Jiadong & Ge, Yunshan & Hao, Lijun & Tan, Jianwei & Peng, Zihang & Zhang, Chuanzhen, 2015. "Comparison of real-world fuel economy and emissions from parallel hybrid and conventional diesel buses fitted with selective catalytic reduction systems," Applied Energy, Elsevier, vol. 159(C), pages 433-441.
    18. Hansen, Kenneth & Breyer, Christian & Lund, Henrik, 2019. "Status and perspectives on 100% renewable energy systems," Energy, Elsevier, vol. 175(C), pages 471-480.
    19. James A. Gana & Thomas Hoppe, 2017. "Assessment of the Governance System Regarding Adoption of Energy Efficient Appliances by Households in Nigeria," Energies, MDPI, vol. 10(1), pages 1-21, January.
    20. Khemakhem, Siwar & Rekik, Mouna & Krichen, Lotfi, 2017. "A flexible control strategy of plug-in electric vehicles operating in seven modes for smoothing load power curves in smart grid," Energy, Elsevier, vol. 118(C), pages 197-208.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:165:y:2016:i:c:p:234-243. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.