IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v6y2013i10p5507-5537d29765.html
   My bibliography  Save this article

An Optimization Framework for Comparative Analysis of Multiple Vehicle Powertrains

Author

Listed:
  • Ganesh Mohan

    (Department of Automotive Engineering, Cranfield University, Bedfordshire MK430AL, UK)

  • Francis Assadian

    (Department of Automotive Engineering, Cranfield University, Bedfordshire MK430AL, UK)

  • Stefano Longo

    (Department of Automotive Engineering, Cranfield University, Bedfordshire MK430AL, UK)

Abstract

With a myriad of alternative vehicle powertrain architectures emerging in the industry, such as electric vehicles and hybrid electric vehicles, it is beneficial that the most appropriate system is chosen for the desired vehicle class and duty cycle, and to minimize a given cost function. This paper investigates this issue, by proposing a novel framework that evaluates different types of powertrain architectures under a unified modular powertrain structure. This framework provides a systematic and objective approach to comparing different types of powertrain architectures simultaneously, and will highlight the benefits that can be achieved from each architecture, thus making it possible to develop the reasoning for manufacturers to implement such systems, and potentially accelerate customer take-up of alternative powertrain technology. The results from this investigation have indicated that such analysis is indeed possible, by way of identifying the “cross-over point” between powertrain architectures, where one powertrain architecture transitions into a different architecture with increments in the required travel range.

Suggested Citation

  • Ganesh Mohan & Francis Assadian & Stefano Longo, 2013. "An Optimization Framework for Comparative Analysis of Multiple Vehicle Powertrains," Energies, MDPI, vol. 6(10), pages 1-31, October.
  • Handle: RePEc:gam:jeners:v:6:y:2013:i:10:p:5507-5537:d:29765
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/6/10/5507/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/6/10/5507/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hongwen He & Rui Xiong & Jinxin Fan, 2011. "Evaluation of Lithium-Ion Battery Equivalent Circuit Models for State of Charge Estimation by an Experimental Approach," Energies, MDPI, vol. 4(4), pages 1-17, March.
    2. Ravi Shankar & James Marco & Francis Assadian, 2012. "The Novel Application of Optimization and Charge Blended Energy Management Control for Component Downsizing within a Plug-in Hybrid Electric Vehicle," Energies, MDPI, vol. 5(12), pages 1-32, November.
    3. Lincun Fang & Shiyin Qin & Gang Xu & Tianli Li & Kemin Zhu, 2011. "Simultaneous Optimization for Hybrid Electric Vehicle Parameters Based on Multi-Objective Genetic Algorithms," Energies, MDPI, vol. 4(3), pages 1-13, March.
    4. Diamond, David, 2009. "The impact of government incentives for hybrid-electric vehicles: Evidence from US states," Energy Policy, Elsevier, vol. 37(3), pages 972-983, March.
    5. Fischer, Michael & Werber, Mathew & Schwartz, Peter V., 2009. "Batteries: Higher energy density than gasoline?," Energy Policy, Elsevier, vol. 37(7), pages 2639-2641, July.
    6. Lucas, Alexandre & Neto, Rui Costa & Silva, Carla Alexandra, 2013. "Energy supply infrastructure LCA model for electric and hydrogen transportation systems," Energy, Elsevier, vol. 56(C), pages 70-80.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shyang-Chyuan Fang & Bwo-Ren Ke & Chen-Yuan Chung, 2017. "Minimization of Construction Costs for an All Battery-Swapping Electric-Bus Transportation System: Comparison with an All Plug-In System," Energies, MDPI, vol. 10(7), pages 1-20, June.
    2. Pablo Moreno-Torres & Marcos Blanco & Marcos Lafoz & Jaime R. Arribas, 2015. "Educational Project for the Teaching of Control of Electric Traction Drives," Energies, MDPI, vol. 8(2), pages 1-18, January.
    3. Yi, Chenyu & Epureanu, Bogdan I. & Hong, Sung-Kwon & Ge, Tony & Yang, Xiao Guang, 2016. "Modeling, control, and performance of a novel architecture of hybrid electric powertrain system," Applied Energy, Elsevier, vol. 178(C), pages 454-467.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Matija Krznar & Petar Piljek & Denis Kotarski & Danijel Pavković, 2021. "Modeling, Control System Design and Preliminary Experimental Verification of a Hybrid Power Unit Suitable for Multirotor UAVs," Energies, MDPI, vol. 14(9), pages 1-24, May.
    2. Weichao Zhuang & Xiaowu Zhang & Huei Peng & Liangmo Wang, 2016. "Simultaneous Optimization of Topology and Component Sizes for Double Planetary Gear Hybrid Powertrains," Energies, MDPI, vol. 9(6), pages 1-17, May.
    3. Zhang, Pei & Yan, Fuwu & Du, Changqing, 2015. "A comprehensive analysis of energy management strategies for hybrid electric vehicles based on bibliometrics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 88-104.
    4. Mohammad Ali Karbaschian & Dirk Söffker, 2014. "Review and Comparison of Power Management Approaches for Hybrid Vehicles with Focus on Hydraulic Drives," Energies, MDPI, vol. 7(6), pages 1-25, May.
    5. Tran, Dai-Duong & Vafaeipour, Majid & El Baghdadi, Mohamed & Barrero, Ricardo & Van Mierlo, Joeri & Hegazy, Omar, 2020. "Thorough state-of-the-art analysis of electric and hybrid vehicle powertrains: Topologies and integrated energy management strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    6. Shehzar Shahzad Sheikh & Mahnoor Anjum & Muhammad Abdullah Khan & Syed Ali Hassan & Hassan Abdullah Khalid & Adel Gastli & Lazhar Ben-Brahim, 2020. "A Battery Health Monitoring Method Using Machine Learning: A Data-Driven Approach," Energies, MDPI, vol. 13(14), pages 1-16, July.
    7. Jianlei Lang & Shuiyuan Cheng & Ying Zhou & Beibei Zhao & Haiyan Wang & Shujing Zhang, 2013. "Energy and Environmental Implications of Hybrid and Electric Vehicles in China," Energies, MDPI, vol. 6(5), pages 1-23, May.
    8. Alexandros Nikolian & Yousef Firouz & Rahul Gopalakrishnan & Jean-Marc Timmermans & Noshin Omar & Peter Van den Bossche & Joeri Van Mierlo, 2016. "Lithium Ion Batteries—Development of Advanced Electrical Equivalent Circuit Models for Nickel Manganese Cobalt Lithium-Ion," Energies, MDPI, vol. 9(5), pages 1-23, May.
    9. Felipe Jiménez & Wilmar Cabrera-Montiel, 2014. "System for Road Vehicle Energy Optimization Using Real Time Road and Traffic Information," Energies, MDPI, vol. 7(6), pages 1-23, June.
    10. Sandra Castano-Solis & Daniel Serrano-Jimenez & Lucia Gauchia & Javier Sanz, 2017. "The Influence of BMSs on the Characterization and Modeling of Series and Parallel Li-Ion Packs," Energies, MDPI, vol. 10(3), pages 1-13, February.
    11. MANAGI Shunsuke, 2012. "Analysis of Alternative Fuel Vehicles by Disaggregated Cost Benefit," Discussion papers 12035, Research Institute of Economy, Trade and Industry (RIETI).
    12. Li, Zhe & Ouyang, Minggao, 2011. "A win-win marginal rent analysis for operator and consumer under battery leasing mode in China electric vehicle market," Energy Policy, Elsevier, vol. 39(6), pages 3222-3237, June.
    13. Ming Cai & Weijie Chen & Xiaojun Tan, 2017. "Battery State-Of-Charge Estimation Based on a Dual Unscented Kalman Filter and Fractional Variable-Order Model," Energies, MDPI, vol. 10(10), pages 1-16, October.
    14. Al-Alawi, Baha M. & Coker, Alexander D., 2018. "Multi-criteria decision support system with negotiation process for vehicle technology selection," Energy, Elsevier, vol. 157(C), pages 278-296.
    15. Farouk Odeim & Jürgen Roes & Angelika Heinzel, 2015. "Power Management Optimization of an Experimental Fuel Cell/Battery/Supercapacitor Hybrid System," Energies, MDPI, vol. 8(7), pages 1-26, June.
    16. Cailou Jiang & Ying Zhang & Maoliang Bu & Weishu Liu, 2018. "The Effectiveness of Government Subsidies on Manufacturing Innovation: Evidence from the New Energy Vehicle Industry in China," Sustainability, MDPI, vol. 10(6), pages 1-11, May.
    17. Cowan, Kelly R. & Daim, Tugrul U., 2011. "Review of technology acquisition and adoption research in the energy sector," Technology in Society, Elsevier, vol. 33(3), pages 183-199.
    18. Kim, Junghun & Seung, Hyunchan & Lee, Jongsu & Ahn, Joongha, 2020. "Asymmetric preference and loss aversion for electric vehicles: The reference-dependent choice model capturing different preference directions," Energy Economics, Elsevier, vol. 86(C).
    19. Xu, Lei & Su, Jun, 2016. "From government to market and from producer to consumer: Transition of policy mix towards clean mobility in China," Energy Policy, Elsevier, vol. 96(C), pages 328-340.
    20. Jenn, Alan & Azevedo, Inês L. & Ferreira, Pedro, 2013. "The impact of federal incentives on the adoption of hybrid electric vehicles in the United States," Energy Economics, Elsevier, vol. 40(C), pages 936-942.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:6:y:2013:i:10:p:5507-5537:d:29765. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.