IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v253y2019ic31.html
   My bibliography  Save this article

Driving cycles construction for electric vehicles considering road environment: A case study in Beijing

Author

Listed:
  • Zhang, Jin
  • Wang, Zhenpo
  • Liu, Peng
  • Zhang, Zhaosheng
  • Li, Xiaoyu
  • Qu, Changhui

Abstract

With the trend of transportation electrification, driving cycles have been widely recognized as effective tools to tackle the challenges of the optimal design, management and evaluation of electric vehicles. In this work, real-world driving data recorded on 1 Hz of 40 electric taxis in Beijing area for 6 months are obtained and fused with road environment information to construct driving cycles tailored for electric vehicles. The conventional Micro-trip method is improved based on minimum comprehensive parameters deviation, which achieve better accuracy with less computational load. A novel improved Markov Monte Carlo method considering the driving features on different roads is proposed to reflect the features of road environment in the driving cycles. 53 parameters including characteristic and distribution parameters are extracted from driving data and used to comprehensively describe the features of driving process, in which the road environment and energy related parameters are also included. Based on Mean absolute percentage error and K-S test, the performances of the proposed methods have been investigated, and the constructed driving cycles as well as NEDC are verified and compared to real-world driving condition.

Suggested Citation

  • Zhang, Jin & Wang, Zhenpo & Liu, Peng & Zhang, Zhaosheng & Li, Xiaoyu & Qu, Changhui, 2019. "Driving cycles construction for electric vehicles considering road environment: A case study in Beijing," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
  • Handle: RePEc:eee:appene:v:253:y:2019:i:c:31
    DOI: 10.1016/j.apenergy.2019.113514
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261919311882
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2019.113514?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Agudelo, Andrés F. & García-Contreras, Reyes & Agudelo, John R. & Armas, Octavio, 2016. "Potential for exhaust gas energy recovery in a diesel passenger car under European driving cycle," Applied Energy, Elsevier, vol. 174(C), pages 201-212.
    2. Gong, Huiming & Zou, Yuan & Yang, Qingkai & Fan, Jie & Sun, Fengchun & Goehlich, Dietmar, 2018. "Generation of a driving cycle for battery electric vehicles:A case study of Beijing," Energy, Elsevier, vol. 150(C), pages 901-912.
    3. Ruan, Jiageng & Walker, Paul D. & Watterson, Peter A. & Zhang, Nong, 2016. "The dynamic performance and economic benefit of a blended braking system in a multi-speed battery electric vehicle," Applied Energy, Elsevier, vol. 183(C), pages 1240-1258.
    4. Choi, Wonjae & Song, Han Ho, 2018. "Well-to-wheel greenhouse gas emissions of battery electric vehicles in countries dependent on the import of fuels through maritime transportation: A South Korean case study," Applied Energy, Elsevier, vol. 230(C), pages 135-147.
    5. Liu, Kai & Wang, Jiangbo & Yamamoto, Toshiyuki & Morikawa, Takayuki, 2016. "Modelling the multilevel structure and mixed effects of the factors influencing the energy consumption of electric vehicles," Applied Energy, Elsevier, vol. 183(C), pages 1351-1360.
    6. Bizhong Xia & Haiqing Wang & Mingwang Wang & Wei Sun & Zhihui Xu & Yongzhi Lai, 2015. "A New Method for State of Charge Estimation of Lithium-Ion Battery Based on Strong Tracking Cubature Kalman Filter," Energies, MDPI, vol. 8(12), pages 1-15, November.
    7. Wang, Hewu & Zhang, Xiaobin & Ouyang, Minggao, 2015. "Energy consumption of electric vehicles based on real-world driving patterns: A case study of Beijing," Applied Energy, Elsevier, vol. 157(C), pages 710-719.
    8. Armas, Octavio & García-Contreras, Reyes & Ramos, Ángel, 2013. "Impact of alternative fuels on performance and pollutant emissions of a light duty engine tested under the new European driving cycle," Applied Energy, Elsevier, vol. 107(C), pages 183-190.
    9. Yi, Chenyu & Epureanu, Bogdan I. & Hong, Sung-Kwon & Ge, Tony & Yang, Xiao Guang, 2016. "Modeling, control, and performance of a novel architecture of hybrid electric powertrain system," Applied Energy, Elsevier, vol. 178(C), pages 454-467.
    10. M. Hadi Amini & Orkun Karabasoglu, 2018. "Optimal Operation of Interdependent Power Systems and Electrified Transportation Networks," Energies, MDPI, vol. 11(1), pages 1-25, January.
    11. Brady, John & O’Mahony, Margaret, 2016. "Development of a driving cycle to evaluate the energy economy of electric vehicles in urban areas," Applied Energy, Elsevier, vol. 177(C), pages 165-178.
    12. Wolfram, Paul & Wiedmann, Thomas, 2017. "Electrifying Australian transport: Hybrid life cycle analysis of a transition to electric light-duty vehicles and renewable electricity," Applied Energy, Elsevier, vol. 206(C), pages 531-540.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cui, Yuepeng & Zou, Fumin & Xu, Hao & Chen, Zhihui & Gong, Kuangmin, 2022. "A novel optimization-based method to develop representative driving cycle in various driving conditions," Energy, Elsevier, vol. 247(C).
    2. Triluck Kusalaphirom & Thaned Satiennam & Wichuda Satiennam & Atthapol Seedam, 2022. "Development of a Real-World Eco-Driving Cycle for Motorcycles," Sustainability, MDPI, vol. 14(10), pages 1-14, May.
    3. Zhang, Jin & Wang, Zhenpo & Liu, Peng & Zhang, Zhaosheng, 2020. "Energy consumption analysis and prediction of electric vehicles based on real-world driving data," Applied Energy, Elsevier, vol. 275(C).
    4. Hongli Liu & Weiguo Yun & Bin Li & Mengling Dai & Yangyuhang Wang, 2023. "A Quantitative Study on Driving Behavior Economy Based on Big Data from the Pure Electric Bus," Sustainability, MDPI, vol. 15(10), pages 1-16, May.
    5. David Watling & Patrícia Baptista & Gonçalo Duarte & Jianbing Gao & Haibo Chen, 2022. "Systematic Method for Developing Reference Driving Cycles Appropriate to Electric L-Category Vehicles," Energies, MDPI, vol. 15(9), pages 1-28, May.
    6. Schücking, Maximilian & Jochem, Patrick, 2021. "Two-stage stochastic program optimizing the cost of electric vehicles in commercial fleets," Applied Energy, Elsevier, vol. 293(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Ziyang & Wang, Can & Wolfram, Paul & Zhang, Yaxin & Sun, Xin & Hertwich, Edgar, 2019. "Assessing electric vehicle policy with region-specific carbon footprints," Applied Energy, Elsevier, vol. 256(C).
    2. Zhang, Jin & Wang, Zhenpo & Liu, Peng & Zhang, Zhaosheng, 2020. "Energy consumption analysis and prediction of electric vehicles based on real-world driving data," Applied Energy, Elsevier, vol. 275(C).
    3. Zhenpo Wang & Changhui Qu & Lei Zhang & Jin Zhang & Wen Yu, 2018. "Integrated Sizing and Energy Management for Four-Wheel-Independently-Actuated Electric Vehicles Considering Realistic Constructed Driving Cycles," Energies, MDPI, vol. 11(7), pages 1-22, July.
    4. Cui, Yuepeng & Xu, Hao & Zou, Fumin & Chen, Zhihui & Gong, Kuangmin, 2021. "Optimization based method to develop representative driving cycle for real-world fuel consumption estimation," Energy, Elsevier, vol. 235(C).
    5. Qiao, Qinyu & Zhao, Fuquan & Liu, Zongwei & He, Xin & Hao, Han, 2019. "Life cycle greenhouse gas emissions of Electric Vehicles in China: Combining the vehicle cycle and fuel cycle," Energy, Elsevier, vol. 177(C), pages 222-233.
    6. Liu, Kai & Wang, Jiangbo & Yamamoto, Toshiyuki & Morikawa, Takayuki, 2018. "Exploring the interactive effects of ambient temperature and vehicle auxiliary loads on electric vehicle energy consumption," Applied Energy, Elsevier, vol. 227(C), pages 324-331.
    7. Cui, Yuepeng & Zou, Fumin & Xu, Hao & Chen, Zhihui & Gong, Kuangmin, 2022. "A novel optimization-based method to develop representative driving cycle in various driving conditions," Energy, Elsevier, vol. 247(C).
    8. Xingyue Jiang & Jianjun Hu & Meixia Jia & Yong Zheng, 2018. "Parameter Matching and Instantaneous Power Allocation for the Hybrid Energy Storage System of Pure Electric Vehicles," Energies, MDPI, vol. 11(8), pages 1-18, July.
    9. Jiangbo Wang & Kai Liu & Toshiyuki Yamamoto, 2017. "Improving Electricity Consumption Estimation for Electric Vehicles Based on Sparse GPS Observations," Energies, MDPI, vol. 10(1), pages 1-12, January.
    10. Ba Hung, Nguyen & Jaewon, Sung & Lim, Ocktaeck, 2017. "A study of the effects of input parameters on the dynamics and required power of an electric bicycle," Applied Energy, Elsevier, vol. 204(C), pages 1347-1362.
    11. Liu, Yang & Zhang, Qi & Lyu, Cheng & Liu, Zhiyuan, 2021. "Modelling the energy consumption of electric vehicles under uncertain and small data conditions," Transportation Research Part A: Policy and Practice, Elsevier, vol. 154(C), pages 313-328.
    12. Lee, Gwangryeol & Song, Jingeun & Han, Jungwon & Lim, Yunsung & Park, Suhan, 2023. "Study on energy consumption characteristics of passenger electric vehicle according to the regenerative braking stages during real-world driving conditions," Energy, Elsevier, vol. 283(C).
    13. Liu, Kai & Wang, Jiangbo & Yamamoto, Toshiyuki & Morikawa, Takayuki, 2016. "Modelling the multilevel structure and mixed effects of the factors influencing the energy consumption of electric vehicles," Applied Energy, Elsevier, vol. 183(C), pages 1351-1360.
    14. Gong, Huiming & Zou, Yuan & Yang, Qingkai & Fan, Jie & Sun, Fengchun & Goehlich, Dietmar, 2018. "Generation of a driving cycle for battery electric vehicles:A case study of Beijing," Energy, Elsevier, vol. 150(C), pages 901-912.
    15. Rosario Miceli & Fabio Viola, 2017. "Designing a Sustainable University Recharge Area for Electric Vehicles: Technical and Economic Analysis," Energies, MDPI, vol. 10(10), pages 1-24, October.
    16. Zhang, Xudong & Zou, Yuan & Fan, Jie & Guo, Hongwei, 2019. "Usage pattern analysis of Beijing private electric vehicles based on real-world data," Energy, Elsevier, vol. 167(C), pages 1074-1085.
    17. Sandra Castano-Solis & Daniel Serrano-Jimenez & Lucia Gauchia & Javier Sanz, 2017. "The Influence of BMSs on the Characterization and Modeling of Series and Parallel Li-Ion Packs," Energies, MDPI, vol. 10(3), pages 1-13, February.
    18. Shafqat Jawad & Junyong Liu, 2020. "Electrical Vehicle Charging Services Planning and Operation with Interdependent Power Networks and Transportation Networks: A Review of the Current Scenario and Future Trends," Energies, MDPI, vol. 13(13), pages 1-24, July.
    19. Boyi Xiao & Huazhong Lu & Hailin Wang & Jiageng Ruan & Nong Zhang, 2017. "Enhanced Regenerative Braking Strategies for Electric Vehicles: Dynamic Performance and Potential Analysis," Energies, MDPI, vol. 10(11), pages 1-19, November.
    20. Bossink, Bart A.G., 2017. "Demonstrating sustainable energy: A review based model of sustainable energy demonstration projects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1349-1362.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:253:y:2019:i:c:31. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.