IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i8p2268-d538326.html
   My bibliography  Save this article

A Novel Adaptive Function—Dual Kalman Filtering Strategy for Online Battery Model Parameters and State of Charge Co-Estimation

Author

Listed:
  • Yongcun Fan

    (School of Information Engineering, Southwest University of Science and Technology, Mianyang 621010, China)

  • Haotian Shi

    (School of Information Engineering, Southwest University of Science and Technology, Mianyang 621010, China)

  • Shunli Wang

    (School of Information Engineering, Southwest University of Science and Technology, Mianyang 621010, China)

  • Carlos Fernandez

    (School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen AB10-7GJ, UK)

  • Wen Cao

    (School of Information Engineering, Southwest University of Science and Technology, Mianyang 621010, China)

  • Junhan Huang

    (School of Information Engineering, Southwest University of Science and Technology, Mianyang 621010, China)

Abstract

This paper aims to improve the stability and robustness of the state-of-charge estimation algorithm for lithium-ion batteries. A new internal resistance-polarization circuit model is constructed on the basis of the Thevenin equivalent circuit to characterize the difference in internal resistance between charge and discharge. The extended Kalman filter is improved through adding an adaptive noise tracking algorithm and the Kalman gain in the unscented Kalman filter algorithm is improved by introducing a dynamic equation. In addition, for benignization of outliers of the two above-mentioned algorithms, a new dual Kalman algorithm is proposed in this paper by adding a transfer function and through weighted mutation. The model and algorithm accuracy is verified through working condition experiments. The result shows that: the errors of the three algorithms are all maintained within 0.8% during the initial period and middle stages of the discharge; the maximum error of the improved extension of Kalman algorithm is over 1.5%, that of improved unscented Kalman increases to 5%, and the error of the new dual Kalman algorithm is still within 0.4% during the latter period of the discharge. This indicates that the accuracy and robustness of the new dual Kalman algorithm is better than those of traditional algorithm.

Suggested Citation

  • Yongcun Fan & Haotian Shi & Shunli Wang & Carlos Fernandez & Wen Cao & Junhan Huang, 2021. "A Novel Adaptive Function—Dual Kalman Filtering Strategy for Online Battery Model Parameters and State of Charge Co-Estimation," Energies, MDPI, vol. 14(8), pages 1-18, April.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:8:p:2268-:d:538326
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/8/2268/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/8/2268/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Manoj Mathew & Stefan Janhunen & Mahir Rashid & Frank Long & Michael Fowler, 2018. "Comparative Analysis of Lithium-Ion Battery Resistance Estimation Techniques for Battery Management Systems," Energies, MDPI, vol. 11(6), pages 1-15, June.
    2. Wang, Yujie & Liu, Chang & Pan, Rui & Chen, Zonghai, 2017. "Modeling and state-of-charge prediction of lithium-ion battery and ultracapacitor hybrids with a co-estimator," Energy, Elsevier, vol. 121(C), pages 739-750.
    3. Wenxian Duan & Chuanxue Song & Yuan Chen & Feng Xiao & Silun Peng & Yulong Shao & Shixin Song, 2020. "Online Parameter Identification and State of Charge Estimation of Battery Based on Multitimescale Adaptive Double Kalman Filter Algorithm," Mathematical Problems in Engineering, Hindawi, vol. 2020, pages 1-20, December.
    4. Wang, Yujie & Chen, Zonghai, 2020. "A framework for state-of-charge and remaining discharge time prediction using unscented particle filter," Applied Energy, Elsevier, vol. 260(C).
    5. Wang, Shunli & Shang, Liping & Li, Zhanfeng & Deng, Hu & Li, Jianchao, 2016. "Online dynamic equalization adjustment of high-power lithium-ion battery packs based on the state of balance estimation," Applied Energy, Elsevier, vol. 166(C), pages 44-58.
    6. Chen, Xiaokai & Lei, Hao & Xiong, Rui & Shen, Weixiang & Yang, Ruixin, 2019. "A novel approach to reconstruct open circuit voltage for state of charge estimation of lithium ion batteries in electric vehicles," Applied Energy, Elsevier, vol. 255(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiong, Wei & Xie, Fang & Xu, Gang & Li, Yumei & Li, Ben & Mo, Yimin & Ma, Fei & Wei, Keke, 2023. "Co-estimation of the model parameter and state of charge for retired lithium-ion batteries over a wide temperature range and battery degradation scope," Renewable Energy, Elsevier, vol. 218(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Yujie & Tian, Jiaqiang & Sun, Zhendong & Wang, Li & Xu, Ruilong & Li, Mince & Chen, Zonghai, 2020. "A comprehensive review of battery modeling and state estimation approaches for advanced battery management systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    2. Chen, Zheng & Zhao, Hongqian & Shu, Xing & Zhang, Yuanjian & Shen, Jiangwei & Liu, Yonggang, 2021. "Synthetic state of charge estimation for lithium-ion batteries based on long short-term memory network modeling and adaptive H-Infinity filter," Energy, Elsevier, vol. 228(C).
    3. Liu, Chunli & Li, Qiang & Wang, Kai, 2021. "State-of-charge estimation and remaining useful life prediction of supercapacitors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    4. Aihua Wu & Yan Zhou & Jingfeng Mao & Xudong Zhang & Junqiang Zheng, 2023. "An Improved Multi-Timescale AEKF–AUKF Joint Algorithm for State-of-Charge Estimation of Lithium-Ion Batteries," Energies, MDPI, vol. 16(16), pages 1-24, August.
    5. Ingvild B. Espedal & Asanthi Jinasena & Odne S. Burheim & Jacob J. Lamb, 2021. "Current Trends for State-of-Charge (SoC) Estimation in Lithium-Ion Battery Electric Vehicles," Energies, MDPI, vol. 14(11), pages 1-24, June.
    6. Shi, Haotian & Wang, Shunli & Huang, Qi & Fernandez, Carlos & Liang, Jianhong & Zhang, Mengyun & Qi, Chuangshi & Wang, Liping, 2024. "Improved electric-thermal-aging multi-physics domain coupling modeling and identification decoupling of complex kinetic processes based on timescale quantification in lithium-ion batteries," Applied Energy, Elsevier, vol. 353(PB).
    7. Wang, Yujie & Sun, Zhendong & Li, Xiyun & Yang, Xiaoyu & Chen, Zonghai, 2019. "A comparative study of power allocation strategies used in fuel cell and ultracapacitor hybrid systems," Energy, Elsevier, vol. 189(C).
    8. Takyi-Aninakwa, Paul & Wang, Shunli & Zhang, Hongying & Yang, Xiao & Fernandez, Carlos, 2023. "A hybrid probabilistic correction model for the state of charge estimation of lithium-ion batteries considering dynamic currents and temperatures," Energy, Elsevier, vol. 273(C).
    9. Parwal, Arvind & Fregelius, Martin & Temiz, Irinia & Göteman, Malin & Oliveira, Janaina G. de & Boström, Cecilia & Leijon, Mats, 2018. "Energy management for a grid-connected wave energy park through a hybrid energy storage system," Applied Energy, Elsevier, vol. 231(C), pages 399-411.
    10. Takyi-Aninakwa, Paul & Wang, Shunli & Zhang, Hongying & Yang, Xiaoyong & Fernandez, Carlos, 2022. "An optimized long short-term memory-weighted fading extended Kalman filtering model with wide temperature adaptation for the state of charge estimation of lithium-ion batteries," Applied Energy, Elsevier, vol. 326(C).
    11. Massimo Ceraolo & Giovanni Lutzemberger & Davide Poli & Claudio Scarpelli, 2021. "Experimental Evaluation of Aging Indicators for Lithium–Iron–Phosphate Cells," Energies, MDPI, vol. 14(16), pages 1-15, August.
    12. Tang, Xiaopeng & Liu, Kailong & Lu, Jingyi & Liu, Boyang & Wang, Xin & Gao, Furong, 2020. "Battery incremental capacity curve extraction by a two-dimensional Luenberger–Gaussian-moving-average filter," Applied Energy, Elsevier, vol. 280(C).
    13. Yonghong Xu & Cheng Li & Xu Wang & Hongguang Zhang & Fubin Yang & Lili Ma & Yan Wang, 2022. "Joint Estimation Method with Multi-Innovation Unscented Kalman Filter Based on Fractional-Order Model for State of Charge and State of Health Estimation," Sustainability, MDPI, vol. 14(23), pages 1-25, November.
    14. Yang, Jufeng & Cai, Yingfeng & Pan, Chaofeng & Mi, Chris, 2019. "A novel resistor-inductor network-based equivalent circuit model of lithium-ion batteries under constant-voltage charging condition," Applied Energy, Elsevier, vol. 254(C).
    15. Wang, Yujie & Sun, Zhendong & Chen, Zonghai, 2019. "Energy management strategy for battery/supercapacitor/fuel cell hybrid source vehicles based on finite state machine," Applied Energy, Elsevier, vol. 254(C).
    16. Henry Miniguano & Andrés Barrado & Cristina Fernández & Pablo Zumel & Antonio Lázaro, 2019. "A General Parameter Identification Procedure Used for the Comparative Study of Supercapacitors Models," Energies, MDPI, vol. 12(9), pages 1-20, May.
    17. Pan, Haihong & Lü, Zhiqiang & Lin, Weilong & Li, Junzi & Chen, Lin, 2017. "State of charge estimation of lithium-ion batteries using a grey extended Kalman filter and a novel open-circuit voltage model," Energy, Elsevier, vol. 138(C), pages 764-775.
    18. Jiang, Cong & Wang, Shunli & Wu, Bin & Fernandez, Carlos & Xiong, Xin & Coffie-Ken, James, 2021. "A state-of-charge estimation method of the power lithium-ion battery in complex conditions based on adaptive square root extended Kalman filter," Energy, Elsevier, vol. 219(C).
    19. Liu, Guoan & Xu, Cheng & Li, Haomiao & Jiang, Kai & Wang, Kangli, 2019. "State of charge and online model parameters co-estimation for liquid metal batteries," Applied Energy, Elsevier, vol. 250(C), pages 677-684.
    20. Meng, Jinhao & Cai, Lei & Stroe, Daniel-Ioan & Luo, Guangzhao & Sui, Xin & Teodorescu, Remus, 2019. "Lithium-ion battery state-of-health estimation in electric vehicle using optimized partial charging voltage profiles," Energy, Elsevier, vol. 185(C), pages 1054-1062.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:8:p:2268-:d:538326. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.