IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i3p404-d93610.html
   My bibliography  Save this article

Energy Management of Parallel-Connected Cells in Electric Vehicles Based on Fuzzy Logic Control

Author

Listed:
  • Chuanxue Song

    (State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun 130022, China)

  • Yulong Shao

    (State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun 130022, China)

  • Shixin Song

    (School of Mechanical Science and Engineering, Jilin University, Changchun 130022, China)

  • Cheng Chang

    (College of Automotive Engineering, Jilin University, Changchun 130022, China)

  • Fang Zhou

    (College of Automotive Engineering, Jilin University, Changchun 130022, China)

  • Silun Peng

    (College of Automotive Engineering, Jilin University, Changchun 130022, China)

  • Feng Xiao

    (State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun 130022, China)

Abstract

Inconsistencies that are associated with parallel-connected cells used in electric vehicles induce varied states of charge ( SOCs ) in each cell. Thus, loop current in the battery pack is inevitable, and this reduces overall capacity, energy utilization rate, and pack lifetime. However, no method is available to address loop current. To reduce loop current and the resulting battery inconsistency, a parallel-connected cell pack (PCCP) model that considers thermal effects is established, and a novel Simscape model that is based on PCCP is successfully constructed. Furthermore, the strategy of parallel-connected cell energy management (PCCEM) is proposed to utilize fuzzy logic control (FLC) strategy, which automatically adjusts the number of cells in a circuit in accordance with the load demand, and turns on the first N switches in the corresponding SOC order. The New European Driving Cycle (NEDC) driving cycle simulation shows that the PCCEM strategy considerably reduces loop current and improves the consistency of battery performance and the utilization rate of battery power.

Suggested Citation

  • Chuanxue Song & Yulong Shao & Shixin Song & Cheng Chang & Fang Zhou & Silun Peng & Feng Xiao, 2017. "Energy Management of Parallel-Connected Cells in Electric Vehicles Based on Fuzzy Logic Control," Energies, MDPI, vol. 10(3), pages 1-13, March.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:3:p:404-:d:93610
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/3/404/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/3/404/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kim, Jonghoon & Cho, B.H., 2013. "Screening process-based modeling of the multi-cell battery string in series and parallel connections for high accuracy state-of-charge estimation," Energy, Elsevier, vol. 57(C), pages 581-599.
    2. Wang, Limei & Cheng, Yong & Zhao, Xiuliang, 2015. "A LiFePO4 battery pack capacity estimation approach considering in-parallel cell safety in electric vehicles," Applied Energy, Elsevier, vol. 142(C), pages 293-302.
    3. Dong, Guangzhong & Wei, Jingwen & Zhang, Chenbin & Chen, Zonghai, 2016. "Online state of charge estimation and open circuit voltage hysteresis modeling of LiFePO4 battery using invariant imbedding method," Applied Energy, Elsevier, vol. 162(C), pages 163-171.
    4. Jip Kim & Seung Wan Kim & Young Gyu Jin & Jong-Keun Park & Yong Tae Yoon, 2016. "Optimal Coordinated Management of a Plug-In Electric Vehicle Charging Station under a Flexible Penalty Contract for Voltage Security," Energies, MDPI, vol. 9(7), pages 1-15, July.
    5. Xiangwei Guo & Longyun Kang & Yuan Yao & Zhizhen Huang & Wenbiao Li, 2016. "Joint Estimation of the Electric Vehicle Power Battery State of Charge Based on the Least Squares Method and the Kalman Filter Algorithm," Energies, MDPI, vol. 9(2), pages 1-16, February.
    6. Dongqi Liu & Yaonan Wang & Yongpeng Shen, 2016. "Electric Vehicle Charging and Discharging Coordination on Distribution Network Using Multi-Objective Particle Swarm Optimization and Fuzzy Decision Making," Energies, MDPI, vol. 9(3), pages 1-17, March.
    7. Alexandros Nikolian & Yousef Firouz & Rahul Gopalakrishnan & Jean-Marc Timmermans & Noshin Omar & Peter Van den Bossche & Joeri Van Mierlo, 2016. "Lithium Ion Batteries—Development of Advanced Electrical Equivalent Circuit Models for Nickel Manganese Cobalt Lithium-Ion," Energies, MDPI, vol. 9(5), pages 1-23, May.
    8. Wang, Shunli & Shang, Liping & Li, Zhanfeng & Deng, Hu & Li, Jianchao, 2016. "Online dynamic equalization adjustment of high-power lithium-ion battery packs based on the state of balance estimation," Applied Energy, Elsevier, vol. 166(C), pages 44-58.
    9. He, Hongwen & Xiong, Rui & Zhao, Kai & Liu, Zhentong, 2013. "Energy management strategy research on a hybrid power system by hardware-in-loop experiments," Applied Energy, Elsevier, vol. 112(C), pages 1311-1317.
    10. Xiaopeng Tang & Boyang Liu & Furong Gao & Zhou Lv, 2016. "State-of-Charge Estimation for Li-Ion Power Batteries Based on a Tuning Free Observer," Energies, MDPI, vol. 9(9), pages 1-12, August.
    11. Heymans, Catherine & Walker, Sean B. & Young, Steven B. & Fowler, Michael, 2014. "Economic analysis of second use electric vehicle batteries for residential energy storage and load-levelling," Energy Policy, Elsevier, vol. 71(C), pages 22-30.
    12. Jun Xu & Siqi Li & Chris Mi & Zheng Chen & Binggang Cao, 2013. "SOC Based Battery Cell Balancing with a Novel Topology and Reduced Component Count," Energies, MDPI, vol. 6(6), pages 1-15, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bizhong Xia & Zheng Zhang & Zizhou Lao & Wei Wang & Wei Sun & Yongzhi Lai & Mingwang Wang, 2018. "Strong Tracking of a H-Infinity Filter in Lithium-Ion Battery State of Charge Estimation," Energies, MDPI, vol. 11(6), pages 1-20, June.
    2. Saiteja, Pemmareddy & Ashok, B., 2022. "Critical review on structural architecture, energy control strategies and development process towards optimal energy management in hybrid vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    3. Phuong-Ha La & Sung-Jin Choi, 2020. "Novel Dynamic Resistance Equalizer for Parallel-Connected Battery Configurations," Energies, MDPI, vol. 13(13), pages 1-17, June.
    4. Neha Bhushan & Saad Mekhilef & Kok Soon Tey & Mohamed Shaaban & Mehdi Seyedmahmoudian & Alex Stojcevski, 2022. "Overview of Model- and Non-Model-Based Online Battery Management Systems for Electric Vehicle Applications: A Comprehensive Review of Experimental and Simulation Studies," Sustainability, MDPI, vol. 14(23), pages 1-31, November.
    5. Liu, Xuze & Fotouhi, Abbas & Auger, Daniel J., 2020. "Optimal energy management for formula-E cars with regulatory limits and thermal constraints," Applied Energy, Elsevier, vol. 279(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lin, Cheng & Yu, Quanqing & Xiong, Rui & Wang, Le Yi, 2017. "A study on the impact of open circuit voltage tests on state of charge estimation for lithium-ion batteries," Applied Energy, Elsevier, vol. 205(C), pages 892-902.
    2. Chuanxue Song & Yulong Shao & Shixin Song & Silun Peng & Fang Zhou & Cheng Chang & Da Wang, 2017. "Insulation Resistance Monitoring Algorithm for Battery Pack in Electric Vehicle Based on Extended Kalman Filtering," Energies, MDPI, vol. 10(5), pages 1-13, May.
    3. Thanh-Tung Nguyen & Abdul Basit Khan & Younghwi Ko & Woojin Choi, 2020. "An Accurate State of Charge Estimation Method for Lithium Iron Phosphate Battery Using a Combination of an Unscented Kalman Filter and a Particle Filter," Energies, MDPI, vol. 13(17), pages 1-15, September.
    4. Bizhong Xia & Wenhui Zheng & Ruifeng Zhang & Zizhou Lao & Zhen Sun, 2017. "A Novel Observer for Lithium-Ion Battery State of Charge Estimation in Electric Vehicles Based on a Second-Order Equivalent Circuit Model," Energies, MDPI, vol. 10(8), pages 1-20, August.
    5. Jiale Xie & Jiachen Ma & Jun Chen, 2018. "Peukert-Equation-Based State-of-Charge Estimation for LiFePO4 Batteries Considering the Battery Thermal Evolution Effect," Energies, MDPI, vol. 11(5), pages 1-14, May.
    6. Tang, Xiaopeng & Gao, Furong & Zou, Changfu & Yao, Ke & Hu, Wengui & Wik, Torsten, 2019. "Load-responsive model switching estimation for state of charge of lithium-ion batteries," Applied Energy, Elsevier, vol. 238(C), pages 423-434.
    7. Xiong, Rui & Yu, Quanqing & Wang, Le Yi & Lin, Cheng, 2017. "A novel method to obtain the open circuit voltage for the state of charge of lithium ion batteries in electric vehicles by using H infinity filter," Applied Energy, Elsevier, vol. 207(C), pages 346-353.
    8. Wang, Yujie & Tian, Jiaqiang & Sun, Zhendong & Wang, Li & Xu, Ruilong & Li, Mince & Chen, Zonghai, 2020. "A comprehensive review of battery modeling and state estimation approaches for advanced battery management systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    9. Gaizka Saldaña & José Ignacio San Martín & Inmaculada Zamora & Francisco Javier Asensio & Oier Oñederra, 2019. "Analysis of the Current Electric Battery Models for Electric Vehicle Simulation," Energies, MDPI, vol. 12(14), pages 1-27, July.
    10. Ruifeng Zhang & Bizhong Xia & Baohua Li & Libo Cao & Yongzhi Lai & Weiwei Zheng & Huawen Wang & Wei Wang, 2018. "State of the Art of Lithium-Ion Battery SOC Estimation for Electrical Vehicles," Energies, MDPI, vol. 11(7), pages 1-36, July.
    11. Shyang-Chyuan Fang & Bwo-Ren Ke & Chen-Yuan Chung, 2017. "Minimization of Construction Costs for an All Battery-Swapping Electric-Bus Transportation System: Comparison with an All Plug-In System," Energies, MDPI, vol. 10(7), pages 1-20, June.
    12. Wang, Shun-Li & Fernandez, Carlos & Zou, Chuan-Yun & Yu, Chun-Mei & Chen, Lei & Zhang, Li, 2019. "A comprehensive working state monitoring method for power battery packs considering state of balance and aging correction," Energy, Elsevier, vol. 171(C), pages 444-455.
    13. Ingvild B. Espedal & Asanthi Jinasena & Odne S. Burheim & Jacob J. Lamb, 2021. "Current Trends for State-of-Charge (SoC) Estimation in Lithium-Ion Battery Electric Vehicles," Energies, MDPI, vol. 14(11), pages 1-24, June.
    14. Thomas Bruen & James Michael Hooper & James Marco & Miguel Gama & Gael Henri Chouchelamane, 2016. "Analysis of a Battery Management System (BMS) Control Strategy for Vibration Aged Nickel Manganese Cobalt Oxide (NMC) Lithium-Ion 18650 Battery Cells," Energies, MDPI, vol. 9(4), pages 1-20, April.
    15. Turksoy, Arzu & Teke, Ahmet & Alkaya, Alkan, 2020. "A comprehensive overview of the dc-dc converter-based battery charge balancing methods in electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    16. Zhang, Xu & Wang, Yujie & Yang, Duo & Chen, Zonghai, 2016. "An on-line estimation of battery pack parameters and state-of-charge using dual filters based on pack model," Energy, Elsevier, vol. 115(P1), pages 219-229.
    17. Liu, Xinhua & Ai, Weilong & Naylor Marlow, Max & Patel, Yatish & Wu, Billy, 2019. "The effect of cell-to-cell variations and thermal gradients on the performance and degradation of lithium-ion battery packs," Applied Energy, Elsevier, vol. 248(C), pages 489-499.
    18. Wei, Jingwen & Chen, Chunlin, 2021. "A multi-timescale framework for state monitoring and lifetime prognosis of lithium-ion batteries," Energy, Elsevier, vol. 229(C).
    19. Haitao Min & Weiyi Sun & Xinyong Li & Dongni Guo & Yuanbin Yu & Tao Zhu & Zhongmin Zhao, 2017. "Research on the Optimal Charging Strategy for Li-Ion Batteries Based on Multi-Objective Optimization," Energies, MDPI, vol. 10(5), pages 1-15, May.
    20. Li, Yue & Chattopadhyay, Pritthi & Xiong, Sihan & Ray, Asok & Rahn, Christopher D., 2016. "Dynamic data-driven and model-based recursive analysis for estimation of battery state-of-charge," Applied Energy, Elsevier, vol. 184(C), pages 266-275.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:3:p:404-:d:93610. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.