IDEAS home Printed from https://ideas.repec.org/a/sae/engenv/v29y2018i3p410-431.html
   My bibliography  Save this article

Optimization of diesel engine input parameters for reducing hydrocarbon emission and smoke opacity using Taguchi method and analysis of variance

Author

Listed:
  • Mohd Muqeem
  • Ahmad Faizan Sherwani
  • Mukhtar Ahmad
  • Zahid Akhtar Khan

Abstract

The aim of this paper is to optimize the input parameters of diesel engine with respect to hydrocarbon emission and smoke opacity through experimentation and Taguchi approach. Four parameters, namely, compression ratio, fuel injection timing, air temperature, and air pressure were varied at five different levels and their effect on hydrocarbon emission and smoke opacity under no load, half load, and full load conditions were recorded. The optimum combination of control/input parameters leading to the optimum values of performance parameters/response variables, were determined using signal-to-noise ratio, analysis of means, and analysis of variance. Confirmation tests were performed to check the validity of the results, which revealed good agreement between the predicted and the experimental values of the response variables at optimum combination of the input parameters.

Suggested Citation

  • Mohd Muqeem & Ahmad Faizan Sherwani & Mukhtar Ahmad & Zahid Akhtar Khan, 2018. "Optimization of diesel engine input parameters for reducing hydrocarbon emission and smoke opacity using Taguchi method and analysis of variance," Energy & Environment, , vol. 29(3), pages 410-431, May.
  • Handle: RePEc:sae:engenv:v:29:y:2018:i:3:p:410-431
    DOI: 10.1177/0958305X17751393
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/0958305X17751393
    Download Restriction: no

    File URL: https://libkey.io/10.1177/0958305X17751393?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Zamboni, Giorgio & Moggia, Simone & Capobianco, Massimo, 2016. "Hybrid EGR and turbocharging systems control for low NOX and fuel consumption in an automotive diesel engine," Applied Energy, Elsevier, vol. 165(C), pages 839-848.
    2. Ganapathy, T. & Murugesan, K. & Gakkhar, R.P., 2009. "Performance optimization of Jatropha biodiesel engine model using Taguchi approach," Applied Energy, Elsevier, vol. 86(11), pages 2476-2486, November.
    3. Fu, Jianqin & Liu, Jingping & Wang, Yong & Deng, Banglin & Yang, Yanping & Feng, Renhua & Yang, Jing, 2014. "A comparative study on various turbocharging approaches based on IC engine exhaust gas energy recovery," Applied Energy, Elsevier, vol. 113(C), pages 248-257.
    4. Wu, Horng-Wen & Wu, Zhan-Yi, 2013. "Using Taguchi method on combustion performance of a diesel engine with diesel/biodiesel blend and port-inducting H2," Applied Energy, Elsevier, vol. 104(C), pages 362-370.
    5. Zhu, Dengting & Zheng, Xinqian, 2017. "Asymmetric twin-scroll turbocharging in diesel engines for energy and emission improvement," Energy, Elsevier, vol. 141(C), pages 702-714.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhu, Dengting & Zheng, Xinqian, 2019. "Fuel consumption and emission characteristics in asymmetric twin-scroll turbocharged diesel engine with two exhaust gas recirculation circuits," Applied Energy, Elsevier, vol. 238(C), pages 985-995.
    2. Ayhan, Vezir & Çangal, Çiçek & Cesur, İdris & Safa, Aykut, 2020. "Combined influence of supercharging, EGR, biodiesel and ethanol on emissions of a diesel engine: Proposal of an optimization strategy," Energy, Elsevier, vol. 207(C).
    3. Serrano, José Ramón & Piqueras, Pedro & De la Morena, Joaquín & Gómez-Vilanova, Alejandro & Guilain, Stéphane, 2021. "Methodological analysis of variable geometry turbine technology impact on the performance of highly downsized spark-ignition engines," Energy, Elsevier, vol. 215(PB).
    4. Bateni, Hamed & Karimi, Keikhosro & Zamani, Akram & Benakashani, Fatemeh, 2014. "Castor plant for biodiesel, biogas, and ethanol production with a biorefinery processing perspective," Applied Energy, Elsevier, vol. 136(C), pages 14-22.
    5. Chintala, V. & Subramanian, K.A., 2015. "Experimental investigations on effect of different compression ratios on enhancement of maximum hydrogen energy share in a compression ignition engine under dual-fuel mode," Energy, Elsevier, vol. 87(C), pages 448-462.
    6. Chintala, V. & Subramanian, K.A., 2017. "Experimental investigation of autoignition of hydrogen-air charge in a compression ignition engine under dual-fuel mode," Energy, Elsevier, vol. 138(C), pages 197-209.
    7. Bose, Probir Kumar & Deb, Madhujit & Banerjee, Rahul & Majumder, Arindam, 2013. "Multi objective optimization of performance parameters of a single cylinder diesel engine running with hydrogen using a Taguchi-fuzzy based approach," Energy, Elsevier, vol. 63(C), pages 375-386.
    8. Baek, Seungju & Lee, Hyeonjik & Lee, Kihyung, 2021. "Fuel efficiency and exhaust characteristics of turbocharged diesel engine equipped with an electric supercharger," Energy, Elsevier, vol. 214(C).
    9. Talebian-Kiakalaieh, Amin & Amin, Nor Aishah Saidina & Mazaheri, Hossein, 2013. "A review on novel processes of biodiesel production from waste cooking oil," Applied Energy, Elsevier, vol. 104(C), pages 683-710.
    10. Jarosław Ziółkowski & Mateusz Oszczypała & Jerzy Małachowski & Joanna Szkutnik-Rogoż, 2021. "Use of Artificial Neural Networks to Predict Fuel Consumption on the Basis of Technical Parameters of Vehicles," Energies, MDPI, vol. 14(9), pages 1-23, May.
    11. Dwivedi, Gaurav & Jain, Siddharth & Sharma, M.P., 2011. "Impact analysis of biodiesel on engine performance—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4633-4641.
    12. İhsan Yanıkoğlu & Erinç Albey & Serkan Okçuoğlu, 2022. "Robust Parameter Design and Optimization for Quality Engineering," SN Operations Research Forum, Springer, vol. 3(1), pages 1-36, March.
    13. Kang, Sae Byul & Kim, Jong Jin & Im, Yong Hoon, 2013. "An experimental investigation of a direct burning of crude Jatropha oil (CJO) and pitch in a commercial boiler system," Renewable Energy, Elsevier, vol. 54(C), pages 8-12.
    14. Kumar, Thanikasalam & Mohsin, Rahmat & Majid, Zulkifli Abd. & Ghafir, Mohammad Fahmi Abdul & Wash, Ananth Manickam, 2020. "Experimental study of the anti-knock efficiency of high-octane fuels in spark ignited aircraft engine using response surface methodology," Applied Energy, Elsevier, vol. 259(C).
    15. Reihani, Amin & Hoard, John & Klinkert, Stefan & Kuan, Chih-Kuang & Styles, Daniel & McConville, Greg, 2020. "Experimental response surface study of the effects of low-pressure exhaust gas recirculation mixing on turbocharger compressor performance," Applied Energy, Elsevier, vol. 261(C).
    16. Najjar, Yousef S.H., 2011. "Comparison of performance of a Greener direct-injection stratified-charge (DISC) engine with a spark-ignition engine using a simplified model," Energy, Elsevier, vol. 36(7), pages 4136-4143.
    17. Dawodu, Folasegun A. & Ayodele, Olubunmi & Xin, Jiayu & Zhang, Suojiang & Yan, Dongxia, 2014. "Effective conversion of non-edible oil with high free fatty acid into biodiesel by sulphonated carbon catalyst," Applied Energy, Elsevier, vol. 114(C), pages 819-826.
    18. Shu, Jun & Fu, Jianqin & Liu, Jingping & Ma, Yinjie & Wang, Shuqian & Deng, Banglin & Zeng, Dongjian, 2019. "Effects of injector spray angle on combustion and emissions characteristics of a natural gas (NG)-diesel dual fuel engine based on CFD coupled with reduced chemical kinetic model," Applied Energy, Elsevier, vol. 233, pages 182-195.
    19. Lu, Kai & Bai, Shuzhan & Zang, Zhicheng & Li, Guoxiang, 2023. "Study on urea deposits risk of after-treatment system based on deposits boundary method," Energy, Elsevier, vol. 267(C).
    20. Wei, Jiangshan & Xue, Yingxian & Deng, Kangyao & Yang, Mingyang & Liu, Ying, 2020. "A direct comparison of unsteady influence of turbine with twin-entry and single-entry scroll on performance of internal combustion engine," Energy, Elsevier, vol. 212(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:engenv:v:29:y:2018:i:3:p:410-431. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.